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Abstract

Background: Valosin containing protein (VCP) is a critical mediator of protein homeostasis and may represent a
valuable therapeutic target for several forms of cancer. Overexpression of VCP occurs in many cancers, and often in
a manner correlating with malignancy and poor outcome. Here, we analyzed VCP expression in canine lymphoma
and assessed its potential as a therapeutic target for this disease.

Methods: VCP expression in canine lymphomas was evaluated by immunoblotting and immunohistochemistry. The
canine lymphoma cell lines CLBL-1, 17-71 and CL-1 were treated with the VCP inhibitor Eeyarestatin 1 (EER-1) at
varying concentrations and times and were assessed for viability by trypan blue exclusion, apoptosis by TUNEL and
caspase activity assays, and proliferation by propidium iodide incorporation and FACS. The mechanism of EER-1
action was determined by immunoblotting and immunofluorescence analyses of Lys48 ubiquitin and markers of
ER stress (DDIT3), autophagy (SOSTM1, MAPTLC3A) and DNA damage (yH2AFX). TRP53/ATM-dependent signaling
pathway activity was assessed by immunoblotting for TRP53 and phospho-TRP53 and real-time RT-PCR measurement
of Cdknla mRNA.

Results: VCP expression levels in canine B cell lymphomas were found to increase with grade. EER-1 treatment killed
canine lymphoma cells preferentially over control peripheral blood mononuclear cells. EER-1 treatment of CLBL-1 cells
was found to both induce apoptosis and cell cycle arrest in G1. Unexpectedly, EER-1 did not appear to act either
by inducing ER stress or inhibiting the aggresome-autophagy pathway. Rather, a rapid and dramatic increase in
YH2AFX expression was noted, indicating that EER-1 may act by promoting DNA damage accumulation. Increased
TRP53 phosphorylation and Cdknla mRNA levels indicated an activation of the TRP53/ATM DNA damage response
pathway in response to EER-1, likely contributing to the induction of apoptosis and cell cycle arrest.

Conclusions: These results correlate VCP expression with malignancy in canine B cell lymphoma. The selective activity
of EER-1 against lymphoma cells suggests that VCP will represent a clinically useful therapeutic target for the treatment
of lymphoma. We further suggest a mechanism of EER-1 action centered on the DNA repair response that may be of
central importance for the design and characterization of VCP inhibitory compounds for therapeutic use.
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Background
Canine lymphoma shares many similarities with human
non-Hodgkin’s lymphoma (NHL) with respect to its mo-
lecular and clinical features [1, 2]. It is one of the most
common neoplasms in dogs and its incidence is reported
to be on the rise, at more than 33 diagnoses per 100 000
dog-years in 2002 [3]. Dogs will usually present with
rapidly progressing, high grade, multicentric disease in
an advanced stage (III or IV/V). Not unlike humans, the
most common histologic subtype diagnosed is diffuse large
B cell lymphoma [4]. First line treatment is a “CHOP”-
based (cyclophosphamide, doxorubicin, vincristine, cor-
ticosteroids) chemotherapy protocol, which results in a
complete response of 6 to 11 months duration in greater
than 80 % of cases. However, overall survival for dogs with
lymphoma remains brief, and averages 12 months with
approximately 10 % surviving 2 years [5]. As is the case
for human NHL, chemoresistance occurring either at
onset or at recurrence is a main reason why treatment
ultimately fails [6, 7]. The many similarities as well as
the rapid course of disease make canine lymphoma an at-
tractive model for the study of novel therapeutics for NHL.
Several strategies are currently being investigated to
circumvent chemoresistance. One that seems to hold
particular promise is the development of molecular-
targeted therapies based on the molecular pathways that
drive NHL cell proliferation and survival [1, 5, 6]. Among
the druggable targets currently under investigation in the
pharmaceutical industry is valosin containing protein
(VCP, also known as p97). VCP is a member of the AAA
family of ATPases and is a critical mediator of protein
homeostasis [8]. Through its interaction with several
accessory proteins and cofactors, VCP notably mediates
endoplasmic reticulum-associated degradation (ERAD),
the process by which misfolded proteins localized in
the ER lumen or membrane are eliminated. Following
their ubiquitination, VCP is thought to extract the tar-
geted proteins from the ER in an ATP-dependent manner,
and maintain their misfolded state until they can be de-
graded by the cellular proteasomal machinery [9]. VCP is
also involved in the aggresome-autophagy pathway, which
is required for the clearance of misfolded proteins that
form aggregates in the cytosol. Here, VCP may act to
recruit E4B ubiquitin ligase activity to aggregates of
misfolded proteins [10] and/or mediate the fusion of
misfolded protein-containing autophagosomes with ly-
sosomes [11]. More recently, VCP has also been associ-
ated with the degradation of chromatin-associated proteins,
including those involved in processes such as DNA rep-
lication and repair, cell division, and gene transcription
[12, 13]. Inhibition of VCP activity therefore has a
range of consequences for the cell, beginning with the
accumulation of misfolded, polyubiquitinated proteins
and culminating in apoptosis, often triggered by ER stress
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and the unfolded protein response [14, 15]. Due to their
higher metabolic and proliferative rates, cancer cells re-
quire increased activities of ER machinery in facilitating
protein folding, assembly, and transport, and are therefore
thought to be more reliant on VCP for the clearance of
misfolded proteins that their normal counterparts [16].
This is supported by the documented overexpression
of VCP in many cancers including lymphoma, and
often in a manner correlating with malignancy and poor
outcome [17-20].

Evidence is accumulating that suggests that VCP rep-
resents a valid therapeutic target for a range of cancers.
Of particular relevance to the present study, the VCP
inhibitor Eeyarestatin 1 (EER-1) was shown to have a
strongly preferential cytotoxic activity against various human
haematological cancer cell lines, relative to peripheral blood
mononuclear cells (PBMCs) [15]. EER-1 also inhibited
tumor growth in a mouse non-small cell lung cancer xeno-
graft model, without overt side effects [21]. These studies,
coupled with the ongoing development of small molecule
inhibitors of VCP intended for therapeutic use [22, 23], indi-
cate that VCP will represent a major target in the develop-
ment of the next generation of cancer treatments.

The aim of the present study was to evaluate VCP as a
therapeutic target for lymphoma using the canine model.
Here, we show that VCP expression correlates with ma-
lignancy in canine B-cell lymphoma. We further demon-
strate that pharmacological inhibition of VCP results in
preferential lymphoma cell kill over PBMCs, validating
VCP as a therapeutic target. Unexpectedly, we also found
evidence suggesting that EER-1 induces apoptosis in CLBL-
1 cells via the accumulation of DNA damage rather than by
the induction of ER stress. These findings will serve as the
conceptual basis for the design of clinical trials using VCP
inhibitory compounds for the treatment of lymphoma.

Methods

Tumor samples

Frozen and formalin-fixed lymphoma tumor samples were
obtained from the Canine Comparative Oncology and
Genomics Consortium and from the Oncology Service
at the Faculté de Médecine Vétérinaire, Université de
Montréal. All tumor grades were determined by a single path-
ologist (MP) using the classification system established by
Valli et al. [4]. Immunophenotype was determined through
CD3 and CD79a immunohistochemistry. Lymph nodes used
as controls were from cadavers of healthy dogs euthanized
for reasons unrelated to illness, and were obtained from the
Département de Pathologie et de Microbiologie, Faculté de
Meédecine Vétérinaire, Université de Montréal.

Immunohistochemistry
Immunohistochemistry was done on formalin-fixed, paraffin-
embedded, 3 pm lymphoma and normal lymph node
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sections using the VectaStain Elite Avidin-Biotin Complex
Kit (Vector Laboratories, Inc.) as directed by the manufac-
turer. Sections were probed with anti-VCP mouse mono-
clonal antibody (Abcam Inc. catalog number ab11433,
dilution 1:4000) as directed by the manufacturer, except
blocking was done with 5 % normal serum in TBST for
1 h at room temperature and incubation with the sec-
ondary antibody (biotinylated anti-mouse reagent, Vector
Laboratories, Inc., dilution 1:500) was done for 30 min.
Staining was done using 3,3’-diaminobenzidine peroxidase
substrate kit (Vector Laboratories, Inc.) as directed by
the manufacturer. Negative controls were done using the
primary antibody described above that was pre-incubated
overnight at 4 °C with VCP peptide (792-806, Abcam
Inc., catalog number ab39788) in a 1:10 antibody:peptide
ratio.

Cell culture

The cell lines used in this study (CL-1, 17-71, CLBL-1)
have been previously characterized and were cultured as
previously described [24, 25]. Briefly, cells were grown in
T75 flasks using RPMI medium (Invitrogen) containing
10 % (CL-1 and 17-71) or 20 % (CLBL-1) heat inactivated
fetal bovine serum (FBS, Invitrogen), 100 units/ml of peni-
cillin, 100 pg/ml of streptomycin and 0.25 pg/ml of fungi-
zone (Invitrogen), and incubated at 37 °C in humidified
5% CO,/95 % air.

Peripheral blood mononuclear cells (PBMCs) were iso-
lated from normal dogs using Histopaque-1077 (10,771;
Sigma) according to the manufacturer’s recommenda-
tions. Briefly, whole blood was collected in heparinized
tubes, layered on an equal volume of histopaque-1077
and centrifuged at 400 g for 30 min for the recovery of
mononuclear cells. PBMCs were cultured under the same
conditions as CL-1 and 17-71 cells (as described above).
All animal procedures were approved by the Institutional
Animal Care and Use Committee of the Université de
Montréal and were in accordance with the Canadian
Council on Animal Care (CCAC) policy on humane care
and use of laboratory animals.

Dose response experiment

Cells were seeded in 24-well plates at a density of 50 x 10
cells per well for 17-71, CL-1 and CLBL-1 cells or 250 x
10%/well for PBMCs, and treated with vehicle (DMSO) or
graded doses of Eeyarestatin 1 (EER-1, #324,521; Calbio-
chem) for 48 h (n = 3 wells/treatment). The number of vi-
able cells was counted 3 times per well using the trypan
blue exclusion assay and a hemocytometer [26]. The
number of viable cells in the treated groups was then
normalized to the number of viable cells in the control
group (vehicle). This experiment was repeated 3 times.
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Time course analyses

CLBL-1 cells were seeded at a density of 2 x 10° cells
per well in a 6-well tissue culture plate and treated with
vehicle (DMSO) or 3 uM EER-1 for 6, 12, or 24 h (n=3
per time point). Cells were then either (i) collected for
protein or mRNA extraction, (ii) fixed for immunofluor-
escence analysis, or (iii) used for flow cytometry or apop-
tosis analyses (see below). All experiments were repeated
3 times.

Apoptosis assays
TUNEL assay: Apoptosis was detected using the In Situ
Cell Death Detection Kit, TMR red (#12,156,792,910;
Roche), following manufacturer’s instructions for cells
grown in suspension. Apoptotic cells were imaged using
an Axio Imager M.1 microscope (Zeiss) and AxioVision
4.6.3 software. For each sample, 3 photomicrographs of
random fields were taken at 200x magnification, and
cells were scored as apoptotic or viable and counted.
Caspase 3/7 assay: The Caspase-Glow (#G8090; Pro-
mega) assay kit was used following manufacturer’s in-
structions. Briefly, for each sample 75 pl of Caspase-Glo
3/7 reagent was added to 75 pl of cultured cells (=20 x
10° cells) in a 96-well plate. The plate was incubated at
room temperature for 3 h prior to quantification using a
plate-reading luminometer (SpectraMax i3, Molecular
Devices).

Cell cycle analysis

CLBL-1 cells were washed twice with PBS, counted and
resuspended at a concentration of 10° cells/ml in Krishan
buffer: 0.1 % Sodium Citrate, 0.02 mg/ml Rnase (DNase
free), 0.3 % NP-40 and 0.05 mg/ml propidium iodide. Cells
were incubated at least 30 mininutes on ice in the dark
before being analyzed on an Accuri C6 flow cytometer
(BD Biosciences), using BD Accuri C6 software version
1.0.264.21. Cells were gated according to a 2-parameter
dot-plot: FL2-A (area) vs Width to monitor doublets. Cell
cycle analysis was performed using a single-parameter
histogram (FL2-A) with linear x-axis to represent DNA
content.

Immunoblot analysis

Proteins were extracted using M-PER” mammalian protein
extraction reagent (#78,501; Thermo Scientific) according
to the manufacturer’s instructions. Proteins were quanti-
fied using the Bradford method (BIO-RAD Protein Assay,
500-0006). Samples (15 pg) were resolved on 12 % so-
dium dodecyl sulfate-polyacrylamide gels and transferred
to Hybond-P PVDF membrane (GE Amersham). Blots
were then probed at 4 °C overnight with antibodies against
YH2AFX (#ab26350; Abcam, 1/1000), Lys48 Ubiquitin
(#05-1307, Millipore, 1/2000), SQSTM1 (#ab56416; Abcam,
1/1000), DDIT3 (#ab11419; Abcam, 1/100), MAPILC3A
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(#4599, Cell signaling, 1/1000), phospho-TRP53 (#9284,
Cell signaling, 1/1000), TRP53 (#ab26; Abcam, 1/1000) or
ACTB (#sc-8432; Santa Cruz, 1/50000). ACTB was used as
the loading control. Following incubation with horseradish
peroxidase-conjugated secondary anti-rabbit or anti-mouse
antibody, the protein bands were visualized by chemilu-
minescence using the Immobilon Western HRP substrate
(#WBKLS0500, Millipore). Signals were visualized on a
Bio-Rad ChemiDoc MP imaging system and quantified
using Image Lab 5.0 software (Bio-Rad laboratories).

Proteins for immunoblot analyses of VCP expression
in lymphoma and healthy nodes were extracted using RIPA
buffer, PhosSTOP Phosphatase Inhibitor Cocktail Tab-
let and Complete Mini Protease Inhibitor Cocktail Tab-
let (Roche Diagnostics, Indianapolis, IN, catalog numbers
04906845001 and 11836153001, respectively). Blots were
prepared as described above using 18 pg of protein for
each sample, and probed with a primary antibody against
VCP (Abcam Inc., number ab11433). Subsequent detec-
tion and quantification steps were as described above.

Immunofluorescence

Cells were washed once with PBS and fixed in 2 % parafor-
maldehyde for 1 h at room temperature. Permeabilization
was done with 0.1 % Sodium Citrate, 0.1 % Triton X-100
for 2 mininutes on ice. Cells were incubated for 1 h with a
blocking solution (PBS with 10 % goat serum) at room
temperature prior to sequential addition of YH2AFX
(1/500) and Lys48 Ubiquitin (1/500) antibodies for 1 h
at room temperature. Secondary anti-mouse (Alexa fluor
488, Invitrogen) and anti-rabbit (Alexa fluor 594, Invi-
trogen) antibodies were added simultaneously (1/500) for
1 h at room temperature in the dark. Slides were mounted
using Vectashield with 4,6-diamidino-2-phenylindole (DAPI,
Vector Laboratories). Negative controls were run omit-
ting the primary antibody. Images were taken using an
Axio Imager M.1 microscope (Zeiss) and analyzed using
Zen software.

Real-time PCR

Total RNA was extracted using the Rneasy mini Kit
(#74106, Qiagen) and 200 ng of total RNA were reverse-
transcribed using the SuperScript Vilo cDNA Synthesis
kit (#11754, Invitrogen) following the manufacturer’s in-
structions. Real-time PCR reactions were run on a C1000
Touch thermal cycler (Bio-Rad laboratories) using SsoAd-
vanced Universal SYBR Green Supermix (#172-5274, Bio-
Rad laboratories). Each PCR reaction consisted of 7.5 pl of
SYBR Green Supermix, 2.3 ul of water, 0.6 pl of gene-
specific primers (10pmol) and 4 ul of diluted cDNA sam-
ple (1/10). PCR reactions run without cDNA (water blank)
served as negative controls. A common thermal cycling
program (3 mininutes at 95 °C, 40 cycles of 15 secondes at
95 °C, 30 secondes at 60 °C and 30 secondes at 72 °C) was
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used to amplify each transcript. A melting curve analysis
and gel electrophoresis were also done to ensure that a
single PCR product was amplified with each primer pair.
Efficiency curves were generated using serial dilutions
of ¢cDNA in abscissa and the corresponding cycle
threshold in ordinate. The slope of the log-linear phase
reflects the amplification efficiency (E) derived from the
formula E = eV/$°P9, To quantify relative gene expres-
sion, the Ct of target gene amplification was compared
to that of the internal reference gene RPLI19, according
to the ratio R = [ECtng/EtCatrgffget]. Verification tests were
done in accordance with MIQE guidelines. Primer se-
quences were: Rpl19 sense 3- TCCAGTGTCCTCCGC
TGTGGCAAA-5; antisense 3-TTCCGGCGGGCCAGA
GTGTTTTT-5; Cdknla sense 3-GATTCGCGGAGCCG
GAG-5; antisense 3'- TTGCTGCCATGAGGGATGG-5'.

Statistical analyses

The cell viability and TUNEL experiments were analyzed
using two-way ANOVA with the Newman-Keuls post-test.
All other data were analyzed using unpaired t-tests. Data
was log-transformed whenever variances were signifi-
cantly different between samples. Differences were consid-
ered significant when P < 0.05.

Results

VCP expression correlates with malignancy in canine B
cell lymphomas

To study VCP expression in canine lymphoma, tumor
VCP protein levels were analyzed by immunoblotting and
compared to normal lymph nodes. Whereas low grade
B-cell lymphomas were found to express VCP at levels
comparable to normal lymph nodes, significantly higher
VCP expression was found in high grade B-cell lymph-
omas (Fig. 1a). Immunohistochemical analyses confirmed
these findings and further showed that low grade B-cell
lymphomas express VCP at a level comparable to lympho-
cytes present in the mantle zone of lymphoid follicles,
whereas VCP expression in medium and high grade B-cell
lymphomas was more comparable to that found in lym-
phocytes of germinal centers (Fig. 1b). VCP expression in
T-cell lymphomas on the other hand did not vary signifi-
cantly according to grade (Fig. 1a). VCP expression levels
in canine lymphoma cell lines were also analyzed by
immunoblotting and compared to PBMCs. Analyses
included the B-cell lymphoma-derived lines CLBL-1 and
17-71, and the T-cell lymphoma line CL-1. VCP expres-
sion was found to be to be higher in all lymphomas cell
lines compared to PBMCs (Fig. 1c).

Lymphoma cells have an increased sensitivity to VCP
inhibition

To determine if VCP inhibition would affect lymphoma
cells differently than their normal counterparts, CLBL-1,
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(See figure on previous page.)

LN =normal lymph node

Fig. 1 VCP protein expression in canine lymphoma. a Immunoblotting analysis was done for VCP. Representative blots are shown, each lane
represents a single lymph node or tumor sample from one patient. Quantitative analyses of were done using n=4-9 tumor samples per grade
and type and normalized to ACTB ({3 actin) as a loading control. Data are presented as mean (cross bar) + SEM (error bars). Asterisk (*) indicates a
statistically significant difference (*P < 0.05) compared to low grade. b VCP immunohistochemistry for B-cell lymphoma compared to normal
lymph node. ¢ Immunoblotting analysis of VCP in PBMCs (signal intensity = 1.01 arbitrary units) and lymphoma cell lines (17-71, CL-1 and CLBL-1)
(average signal intensity = 3.33 arbitrary units). High, Inter (Intermediate) and Low refer to grade, T and B refer to lymphoma cellular subtype,

CL-1, 17-71 cell lines as well as PBMCs were cultured
for 48 h and exposed to increasing concentrations of
EER-1. Whereas even the highest tested dose failed to
reduce numbers of viable PBMCs below ~40 % of con-
trol, virtually all lymphoma cells were killed by 2 uM
(CLBL-1 and CL-1) or 3 uM (17-71) EER-1 (Fig. 2).

To determine if EER-1 treatment induced apoptosis in
lymphoma cells, TUNEL assays were done on cultured
cells treated with 1, 2 or 3 pM EER-1 for 48 h. Signifi-
cant increases in the number of TUNEL-positive cells
was noted in all cell lines at doses of 2 pM or greater,
with CLBL-1 cells being the most sensitive to EER-1
treatment (Fig. 3a, b). To further analyze the kinetics of
induction of apoptosis by EER-1, CLBL-1 cells were cul-
tured for 6, 12 and 24 h with or without 3 pM EER-1,
and the activation of the caspase cascade determined
using the Caspase-Glo 3/7 assay. By this method, EER-1
was found to induce apoptosis as early as 12 h post-
treatment (Fig. 3c¢).
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Fig. 2 VCP inhibition decreases canine lymphoma cell viability. PBMCs,
CLBL-1,17-71 and CL-1 cells were treated for 48 h with graded doses
of EER-1. Cell viability was evaluated by trypan blue exclusion. At 1 and
2 UM doses, the proportion of viable PBMCs was significantly higher
than in CL-1 cells (p < 0.05 and p < 0.01, respectively). At 3,4 and 5 uM,
the proportion of viable PBMCs was significantly higher than CLBL-1,
17-71 or CL-1 cells (p < 0.001 for each cell line and for each inhibitor
concentration). Data are presented as means + SEM (error bars), n=4
replicates per treatment. The experiment was repeated three times,
and a representative result is shown

To assess the effects of VCP inhibition on cell prolifer-
ation, cell cycle distribution was determined in CLBL-1
cells at different times following EER-1 treatment. Propi-
dium iodide incorporation and FACS analyses showed no
effect of EER-1 after 6 or 12 h of treatment (not shown),
but after 24 h the proportion of cells in the S and G2/M
phases was reduced, as evidenced by decreased heights of
the G2/M peak and the S-phase plateau between the G0/
G1 and G2/M peaks (Fig. 4, quantification shown in 4a).
This was accompanied by a modest (c.5 %) but significant
increase in GO/G1 peak (Fig. 4).

VCP inhibition results in DNA damage and TRP53
pathway activation

VCP is central to cellular protein homeostasis [8]. As
such it is involved in many aspects of cellular protein
degradation including endoplasmic reticulum-associated
degradation (ERAD), the aggresome-autophagy pathway
(AA) and chromatin-associated degradation (CAD). To
determine if the cytotoxicity of EER-1 in lymphoma cells
could be specifically associated with perturbations in any
of the aforementioned processes, CLBL-1 cells were
cultured and treated with EER-1 over a time course. Im-
munoblotting was then done to assess levels of Lys48
polyubiquitinated proteins, as well as markers of ERAD
(DDIT3), AA (SQSTM1, MAP1LC3A) and DNA damage
(YH2AFX, a marker of double-stranded DNA breaks). As
expected, EER-1 treatment resulted in the accumulation
of polyubiquitinated proteins with peak levels observed
6 h post-treatment (Fig. 5), reflecting decreased proteoso-
mal degradation. Surprisingly however, no alterations in
DDIT3, SQSTM1 or MAP1LC3A were detected, whereas
the positive controls thapsigargin and chloroquine readily
induced DDIT3 and MAPILC3A(II) expression, respect-
ively (Additional file 1: Figure S1). These findings suggest
that the cytotoxic effects of EER-1 were not the result of
ERAD or AA inhibition. Conversely, a dramatic increase
in YH2AFX levels was noted at all time points, attaining
peak levels at 12 h following EER-1 treatment. Immuno-
fluorescence analyses of CLBL-1 cells confirmed the in-
crease in YH2AFX expression in response to EER-1, and
in a manner coincident with the accumulation of Lys48
polyubiquitinated proteins in both the cytoplasm and nu-
cleus (Fig. 6).
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As these results suggested that EER-1-induced apop-
tosis in CLBL-1 cells may be the direct result of DNA
damage, we determined if EER-1 treatment activates the
TRP53/ATM-dependent signaling pathway. In the latter,
the kinase ATM is recruited to double-stranded DNA
breaks and phosphorylates a range of substrates including
the tumor suppressor protein TRP53. Phospho-TRP53 in
turn participates in the transcriptional activation of the
cyclin-dependent kinase inhibitor Cdknla, resulting in cell
cycle arrest G1/S checkpoint or apoptosis [27]. CLBL-1
cells were cultured and treated with EER-1 in a time
course experiment, and TRP53 (Ser15) phosphorylation
was evaluated by immunoblotting and Cdknla expression
was evaluated by qRT-PCR. Both phosphoTRP53 and the
ratio of phospho:total TRP53 increased progressively in

response to EER-1, attaining statistical significance at 24 h
post-treatment (Fig. 7a). Cdknla mRNA levels were also
increased in the treated group compared to control at all
time points examined (Fig. 7b).

Discussion

A number of studies so far have examined VCP expres-
sion in human malignancies [18-20, 28-33], but only
Zhu et al. have specifically studied lymphoma [17]. In
the latter report, VCP expression levels in primary or-
bital MALT lymphoma (a type of B-cell lymphoma) were
found to correlate in a positive manner with disease re-
currence and in a negative manner with patient survival
[17]. Here, we show for the first time that increased
VCP expression also occurs in canine B-cell lymphoma,
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(area) vs width); the gray rectangle represents the population of cells analyzed in the FACS experiment. Representative FACS analyses of vehicle-treated
(€) and EER-1-treated (d) cells. Gray arrows indicate the populations that were defined as G0/G1, S and G2/M

specifically in high-grade forms of the disease. The
biological significance of this finding remains to be de-
termined, but could indicate that malignant B-cell lymph-
omas produce greater amounts of polyubiquitinated and
misfolded proteins than normal B cells, therefore requir-
ing increased levels of VCP expression to ensure their
proteosomal degradation, reduce ER stress and avoid
undergoing apoptosis. Why malignant B cells would pro-
duce more polyubiquitinated and misfolded proteins is
also unclear, but could simply be a by-product of their in-
creased secretory, metabolic and proliferative activity. In-
deed, others have suggested that the secretory demands

that come with B-cell differentiation may result in a
basal level of ER stress and unfolded protein response
activation [34-36]. Furthermore, we found VCP expres-
sion in high-grade B-cell lymphomas to be comparable
to that found in the germinal centers of lymph nodes,
which represent a highly proliferative subpopulation of
B cells [37]. Conversely, VCP expression in low grade
B-cell lymphomas was comparable to that found in the
(more differentiated and less proliferative) B cells that
compose the mantle zone. VCP expression may there-
fore reflect both the malignancy and the proliferative
activity of B-cell lymphomas, and may be predictive of
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times, and a representative result is shown

Fig. 5 VCP inhibition induces concomitant increases in Lys48 polyubiquitinated proteins and yH2AFX. a) Immunoblotting analysis was done for
Lys48 ubiquitin, yH2AFX, MAP1LC3A, SOSTM1and DDIT3 on CLBL-1 cells treated on a time course with 3 uM EER-1. Representative blots are
shown, each lane represents cells collected from a single well. b) Quantitative analyses of were done using n =3 replicates per condition and
normalized to ACTB (( actin) as a loading control. Data are presented as means (columns) + SEM (error bars). Asterisks indicate a statistically
significant difference (*P < 0.05, **P < 0.01 and **P < 0.001) compared to their respective control. Veh = Vehicle. The experiment was repeated three

their responsiveness to VCP-targeted therapies. The lat-
ter theory appears to be supported by our pharmaco-
logical studies, as the B-cell lymphoma lines 17-71 and
CLBL-1 had increased VCP expression and were far
more sensitive to VCP inhibition than normal blood
mononuclear cells.

Given the nature of its biological functions, several
authors have proposed that VCP could represent a
pharmacological target for the treatment of cancer
[8, 12, 16, 21, 38]. Indeed, several novel VCP-
inhibitory compounds have recently been reported
[14, 22, 23, 39-41] and are currently under develop-
ment for therapeutic use. The first indication that
VCP inhibitors could be useful against lymphoma was
a study by Wang et al., which showed that EER-1 has a
strongly preferential cytotoxic activity against several
human haematological cancer cell lines (including
mantle cell and Burkitt’s lymphoma lines) relative to
blood mononuclear cells [15]. In the present study, we
show that EER-1 has a similar selective toxicity to-
wards canine lymphoma cells relative to normal mono-
nuclear cells. This finding suggest that VCP-targeted
therapy will be as relevant to canine lymphoma as it will
to the human disease, and further highlights the value of
spontaneous canine lymphoma as a model for transla-
tional studies.

To investigate the mechanism of EER-1 action in
CLBL-1 cells, we began by assessing its effects on ER
stress. Wang et al. demonstrated that treatment of the
mantle cell lymphoma line JEKO-1 with 10 uM EER-1
resulted in a dramatic increase in the expression of ER
stress markers including DDIT3 within 10 h [15]. These
authors further showed that the ER stress-responsive
transcription factors ATF3 and ATF4 participate in the
transcriptional activation of the pro-apoptotic gene
NOXA, suggesting that the induction of ER stress by
EER-1 represents a major pathway through which it
exerts its cytotoxic effect. Surprisingly, we were not
able to find any evidence of increased ER stress
(or alteration of the functioning of the aggresome-
autophagy pathway) in CLBL-1 cells under the treat-
ment conditions that we used, leading us to investigate
additional VCP-regulated biological processes. Multiple
studies in recent years have shown that VCP extracts

ubiquitinated substrates from chromatin, and that
interference with this activity results in protein- in-
duced chromatin stress, the consequences of which in-
clude inadequate responses to DNA damage and
genomic instability [12]. Here, we show that EER-1
treatment results in a rapid accumulation in DNA dam-
age in CLBL-1 cells in a manner co-incident with the
accumulation of Lys48 polyubiquitinated proteins in
the cytoplasm and nucleus. We further show that this
is accompanied by an induction of the TRP53/ATM-
dependent signaling pathway and results in an increase
in Cdknla expression, which in turn is a likely mediator
of both the G1 cell cycle arrest and induction of apop-
tosis that were observed. Exactly how EER-1 treatment
results in increased DNA damage remains to be deter-
mined. A recent study [42] has shown that the DNA
damage recognition subunits DDB2 and XPC must be
promptly removed from chromatin in a VCP-dependent
manner during DNA excision repair. Reduced VCP ac-
tivity results in prolonged retention of DDB2 and XPC,
which in turn results in an attenuation of repair and
causes chromosomal aberrations [42]. Further studies
will be required to determine if a similar mechanism
occurs in lymphoma cells in response to EER-1, if add-
itional processes and mediators are involved in mediat-
ing EER-1 toxicity, as well as to verify that the “DNA
damage” mechanism is also relevant to human lymph-
oid malignancies.

Conclusions

This study validated VCP as a novel therapeutic target
for canine lymphoma and identified a novel cellular
mechanism of EER-1 action centered on the DNA repair
response. Further studies are needed to determine the
precise pathways that lead to DNA damage, TRP53
activation and to apoptosis. Although an unexpected
mechanism of action was identified in this instance, the
canine model nonetheless permits the evaluation of
novel therapeutic targets in an immunocompetent host
with a spontaneously occurring cancer, and will there-
fore, in our opinion, represent a valid and valuable
system to study VCP as a therapeutic target in lymphoid
malignancies.
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Fig. 6 VCP inhibition results in nuclear Lys48 ubiquitin protein accumulation and DNA damage. Cells were cultured for 12 h with or without
3 UM EER-1. Co-immunolabelling was performed for Lys48 ubiquitin and yH2AFX for treated (right panels) and untreated cells (left panels). A
negative control was performed without the primary antibody (not shown)
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Fig. 7 EER-1 treatment results in TRP53 pathway activation in canine lymphoma cells. CLBL-1 cells were cultured for 6, 12 or 24 h with or without 3 uM
EER-1. a Immunoblotting analysis for phospho-TRP53 (Ser 15) and total TRP53. Representative blots are shown (upper panels), each lane represents cells
from a single well. Quantitative analyses of phospho-TRP53/ total TRP53 ratios (lower panel) were done using n = 3 replicates per condition. b Cdknla
mRNA expression was analyzed by real time PCR. Data are presented as mean (columns) = SEM (error bars). Asterisks indicate a statistically significant
difference (**P <001 and ***P < 0.001) compared to their respective control. The experiment was repeated three times, and representative results are shown
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Additional file

Additional file 1: Figure S1. ER stress and autophagy positive controls.
CLBL-1 cells were treated with A) Thapsigargin at 1 uM or B) Chloroquine
at 50 uM for the indicated times. Vehicle = DMSO. Each lane represents
one independant sample.
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