140 research outputs found

    Mathematical models for erosion and the optimal transportation of sediment

    No full text
    We investigate a mathematical theory for the erosion of sediment which begins with the study of a non-linear, parabolic, weighted 4-Laplace equation on a rectangular domain corresponding to a base segment of an extended landscape. Imposing natural boundary conditions, we show that the equation admits entropy solutions and prove regularity and uniqueness of weak solutions when they exist. We then investigate a particular class of weak solutions studied in previous work of the first author and produce numerical simulations of these solutions. After introducing an optimal transportation problem for the sediment flow, we show that this class of weak solutions implements the optimal transportation of the sediment

    On the discrete spectrum of quantum layers

    Full text link
    Consider a quantum particle trapped between a curved layer of constant width built over a complete, non-compact, C2\mathcal C^2 smooth surface embedded in R3\mathbb{R}^3. We assume that the surface is asymptotically flat in the sense that the second fundamental form vanishes at infinity, and that the surface is not totally geodesic. This geometric setting is known as a quantum layer. We consider the quantum particle to be governed by the Dirichlet Laplacian as Hamiltonian. Our work concerns the existence of bound states with energy beneath the essential spectrum, which implies the existence of discrete spectrum. We first prove that if the Gauss curvature is integrable, and the surface is weakly Îş\kappa-parabolic, then the discrete spectrum is non-empty. This result implies that if the total Gauss curvature is non-positive, then the discrete spectrum is non-empty. We next prove that if the Gauss curvature is non-negative, then the discrete spectrum is non-empty. Finally, we prove that if the surface is parabolic, then the discrete spectrum is non-empty if the layer is sufficiently thin.Comment: Clarifications and corrections to previous version, conjecture from previous version is proven here (Theorem 1.5), additional references include

    The fundamental gap of simplices

    Get PDF
    The fundamental gap conjecture was recently proven by Andrews and Clutterbuck: for any convex domain in Rn\R^n normalized to have unit diameter, the difference between the first two Dirichlet eigenvalues of the Laplacian is bounded below by that of the interval. In this work, we focus on the moduli spaces of simplices in all dimensions, and later specialize to the moduli space of Euclidean triangles. Our first theorem is a compactness result for the gap function on the moduli space of simplices in any dimension. Our second main result verifies a recent conjecture of Antunes-Freitas: for any Euclidean triangle normalized to have unit diameter, the fundamental gap is uniquely minimized by the equilateral triangle.Comment: Final version, Journal ref adde

    The Role of Oligomerization and Cooperative Regulation in Protein Function: The Case of Tryptophan Synthase

    Get PDF
    The oligomerization/co-localization of protein complexes and their cooperative regulation in protein function is a key feature in many biological systems. The synergistic regulation in different subunits often enhances the functional properties of the multi-enzyme complex. The present study used molecular dynamics and Brownian dynamics simulations to study the effects of allostery, oligomerization and intermediate channeling on enhancing the protein function of tryptophan synthase (TRPS). TRPS uses a set of α/β–dimeric units to catalyze the last two steps of L-tryptophan biosynthesis, and the rate is remarkably slower in the isolated monomers. Our work shows that without their binding partner, the isolated monomers are stable and more rigid. The substrates can form fairly stable interactions with the protein in both forms when the protein reaches the final ligand–bound conformations. Our simulations also revealed that the α/β–dimeric unit stabilizes the substrate–protein conformation in the ligand binding process, which lowers the conformation transition barrier and helps the protein conformations shift from an open/inactive form to a closed/active form. Brownian dynamics simulations with a coarse-grained model illustrate how protein conformations affect substrate channeling. The results highlight the complex roles of protein oligomerization and the fine balance between rigidity and dynamics in protein function

    Negation and the functional sequence

    Get PDF
    There exists a general restriction on admissible functional sequences which prevents adjacent identical heads. We investigate a particular instantiation of this restriction in the domain of negation. Empirically, it manifests itself as a restriction the stacking of multiple negative morphemes. We propose a principled account of this restriction in terms of the general ban on immediately consecutive identical heads in the functional sequence on the one hand, and the presence of a Neg feature inside negative morphemes on the other hand. The account predicts that the stacking of multiple negative morphemes should be possible provided they are separated by intervening levels of structure. We show that this prediction is borne out

    How protein targeting to primary plastids via the endomembrane system could have evolved? A new hypothesis based on phylogenetic studies

    Full text link
    • …
    corecore