2,022 research outputs found

    Recurrence relations and vector equilibrium problems arising from a model of non-intersecting squared Bessel paths

    Full text link
    In this paper we consider the model of nn non-intersecting squared Bessel processes with parameter α\alpha, in the confluent case where all particles start, at time t=0t=0, at the same positive value x=ax=a, remain positive, and end, at time T=tT=t, at the position x=0x=0. The positions of the paths have a limiting mean density as nn\to\infty which is characterized by a vector equilibrium problem. We show how to obtain this equilibrium problem from different considerations involving the recurrence relations for multiple orthogonal polynomials associated with the modified Bessel functions. We also extend the situation by rescaling the parameter α\alpha, letting it increase proportionally to nn as nn increases. In this case we also analyze the recurrence relation and obtain a vector equilibrium problem for it.Comment: 28 pages, 10 figure

    Asymptotic behavior and zero distribution of polynomials orthogonal with respect to Bessel functions

    Get PDF
    We consider polynomials P_n orthogonal with respect to the weight J_? on [0,?), where J_? is the Bessel function of order ?. Asheim and Huybrechs considered these polynomials in connection with complex Gaussian quadrature for oscillatory integrals. They observed that the zeros are complex and accumulate as n?? near the vertical line Rez=??2. We prove this fact for the case 0???1/2 from strong asymptotic formulas that we derive for the polynomials Pn in the complex plane. Our main tool is the Riemann-Hilbert problem for orthogonal polynomials, suitably modified to cover the present situation, and the Deift-Zhou steepest descent method. A major part of the work is devoted to the construction of a local parametrix at the origin, for which we give an existence proof that only works for ??1/2

    Consideraciones sobre la filogenia de los Peces

    Get PDF

    The role of geometry on dispersive forces

    Full text link
    The role of geometry on dispersive forces is investigated by calculating the energy between different spheroidal particles and planar surfaces, both with arbitrary dielectric properties. The energy is obtained in the non-retarded limit using a spectral representation formalism and calculating the interaction between the surface plasmons of the two macroscopic bodies. The energy is a power-law function of the separation of the bodies, where the exponent value depends on the geometrical parameters of the system, like the separation distance between bodies, and the aspect ratio among minor and major axes of the spheroid.Comment: Presneted at QFEXT05, Barcelona 2005. Submitted to J. Phys.

    Equivalence of critical scaling laws for many-body entanglement in the Lipkin-Meshkov-Glick model

    Get PDF
    We establish a relation between several entanglement properties in the Lipkin-Meshkov-Glick model, which is a system of mutually interacting spins embedded in a magnetic field. We provide analytical proofs that the single-copy entanglement and the global geometric entanglement of the ground state close to and at criticality behave as the entanglement entropy. These results are in deep contrast to what is found in one- dimensional spin systems where these three entanglement measures behave differently.Comment: 4 pages, 2 figures, published versio

    High-multipolar effects on the Casimir force: the non-retarded limit

    Full text link
    We calculate exactly the Casimir force or dispersive force, in the non-retarded limit, between a spherical nanoparticle and a substrate beyond the London's or dipolar approximation. We find that the force is a non-monotonic function of the distance between the sphere and the substrate, such that, it is enhanced by several orders of magnitude as the sphere approaches the substrate. Our results do not agree with previous predictions like the Proximity theorem approach.Comment: 7 pages including 2 figures. Submitted to Europjysics Letter

    Universal geometric entanglement close to quantum phase transitions

    Get PDF
    Under successive Renormalization Group transformations applied to a quantum state Ψ\ket{\Psi} of finite correlation length ξ\xi, there is typically a loss of entanglement after each iteration. How good it is then to replace Ψ\ket{\Psi} by a product state at every step of the process? In this paper we give a quantitative answer to this question by providing first analytical and general proofs that, for translationally invariant quantum systems in one spatial dimension, the global geometric entanglement per region of size LξL \gg \xi diverges with the correlation length as (c/12)log(ξ/ϵ)(c/12) \log{(\xi/\epsilon)} close to a quantum critical point with central charge cc, where ϵ\epsilon is a cut-off at short distances. Moreover, the situation at criticality is also discussed and an upper bound on the critical global geometric entanglement is provided in terms of a logarithmic function of LL.Comment: 4 pages, 3 figure

    Asymptotics of matrix valued orthogonal polynomials on [1,1][-1,1]

    Full text link
    We analyze the large degree asymptotic behavior of matrix valued orthogonal polynomials (MVOPs), with a weight that consists of a Jacobi scalar factor and a matrix part. Using the Riemann-Hilbert formulation for MVOPs and the Deift-Zhou method of steepest descent, we obtain asymptotic expansions for the MVOPs as the degree tends to infinity, in different regions of the complex plane (outside the interval of orthogonality, on the interval away from the endpoints and in neighborhoods of the endpoints), as well as for the matrix coefficients in the three-term recurrence relation for these MVOPs. The asymptotic analysis follows the work of Kuijlaars, McLaughlin, Van Assche and Vanlessen on scalar Jacobi-type orthogonal polynomials, but it also requires several different factorizations of the matrix part of the weight, in terms of eigenvalues/eigenvectors and using a matrix Szeg\H{o} function. We illustrate the results with two main examples, MVOPs of Jacobi and Gegenbauer type, coming from group theory.Comment: 48 pages, 8 figures. Some typos corrected in the last versio

    Spectral representation of the Casimir Force Between a Sphere and a Substrate

    Full text link
    We calculate the Casimir force in the non-retarded limit between a spherical nanoparticle and a substrate, and we found that high-multipolar contributions are very important when the sphere is very close to the substrate. We show that the highly inhomegenous electromagnetic field induced by the presence of the substrate, can enhance the Casimir force by orders of magnitude, compared with the classical dipolar approximation.Comment: 5 page + 4 figures. Submitted to Phys. Rev. Let
    corecore