588 research outputs found

    Predicting Eye Fixations on Complex Visual Stimuli Using Local Symmetry

    Get PDF
    Most bottom-up models that predict human eye fixations are based on contrast features. The saliency model of Itti, Koch and Niebur is an example of such contrast-saliency models. Although the model has been successfully compared to human eye fixations, we show that it lacks preciseness in the prediction of fixations on mirror-symmetrical forms. The contrast model gives high response at the borders, whereas human observers consistently look at the symmetrical center of these forms. We propose a saliency model that predicts eye fixations using local mirror symmetry. To test the model, we performed an eye-tracking experiment with participants viewing complex photographic images and compared the data with our symmetry model and the contrast model. The results show that our symmetry model predicts human eye fixations significantly better on a wide variety of images including many that are not selected for their symmetrical content. Moreover, our results show that especially early fixations are on highly symmetrical areas of the images. We conclude that symmetry is a strong predictor of human eye fixations and that it can be used as a predictor of the order of fixation

    Modulating the photoluminescence of bridged silsesquioxanes incorporating Eu(3+)-complexed n,n '-diureido-2,2 '-bipyridine isomers: application for luminescent solar concentrators

    Get PDF
    Two new urea-bipyridine derived bridged organosilanes (P5 and P6) have been synthesized and their hydrolysis-condensation under nucleophilic catalysis in the presence of Eu(3+) salts led to luminescent bridged silsesquioxanes (M5-Eu and M6-Eu). An important loading of Eu(3+) (up to 11%(w)) can be obtained for the material based on the 6,6'-isomer. Indeed the photoluminescence properties of these materials, that have been investigated in depth (photoluminescence (PL), quantum yield, lifetimes), show a significantly different complexation mode of the Eu(3+) ions for M6-Eu, compared with M4-Eu (obtained from the already-reported 4,4'-isomer) and M5-Eu. Moreover, M6-Eu exhibits the highest absolute emission quantum yield value (0.18 +/- 0.02) among these three materials. The modification of the sol composition upon the addition of a malonamide derivative led to similar luminescent features but with an increased quantum yield (026 +/- 0.03). In addition, M6-Eu can be processed as thin films by spin-coating on glass substrates, leading to plates coated by a thin layer (similar to 54 nm) of Eu(3+)-containing hybrid silica exhibiting one of the highest emission quantum yields reported so far for films of Eu(3+)-containing hybrids (0.34 +/- 0.03) and an interesting potential as new luminescent solar concentrators (LSCs) with an optical conversion efficiency of similar to 4%. The ratio between the light guided to the film edges and the one emitted by the surface of the film was quantified through the mapping of the intensity of the red pixels (in the RGB color model) from a film image. This quantification enabled a more accurate estimation of the transport losses due to the scattering of the emitted light in the film (0.40), thereby correcting the initial optical conversion efficiency to a value of 1.7%.FCT - PTDC/CTM/101324/2008COMPETEFEDE

    In vitro models of cancer stem cells and clinical applications

    Full text link

    Automatic gait recognition by symmetry analysis

    Get PDF
    We describe a new method for automatic gait recognition based on analysing the symmetry of human motion using the Generalised Symmetry Operator. This approach is reinforced by the psychologists' view that gait is a symmetrical pattern of motion and results show that gait can indeed be recognised by symmetry analysis
    corecore