34 research outputs found

    Fluorescence yield near edge spectroscopy of [pi]-bonded CO on Fe(100)

    Full text link
    Near edge X-ray absorption fine structure (NEXAFS) spectra of CO adsorbed on the Fe(100) surface are reported. Spectra, obtained by fluorescence yield (FYNES), are presented for each of the four individual CO adsorption configurations observed on this surface. The [pi]-bonded state exhibits an unusual FYNES spectrum and polarization dependence which indicates that the molecule is either extensively rehybridized or tilted with respect to the surface normal. The FYNES spectra of each of the adsorption states directly reflect the perturbation of the carbon-oxygen bond by the surface and track systematically with the heat of adsorption.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27641/1/0000017.pd

    Mitochondrial Variability as a Source of Extrinsic Cellular Noise

    Get PDF
    We present a study investigating the role of mitochondrial variability in generating noise in eukaryotic cells. Noise in cellular physiology plays an important role in many fundamental cellular processes, including transcription, translation, stem cell differentiation and response to medication, but the specific random influences that affect these processes have yet to be clearly elucidated. Here we present a mechanism by which variability in mitochondrial volume and functionality, along with cell cycle dynamics, is linked to variability in transcription rate and hence has a profound effect on downstream cellular processes. Our model mechanism is supported by an appreciable volume of recent experimental evidence, and we present the results of several new experiments with which our model is also consistent. We find that noise due to mitochondrial variability can sometimes dominate over other extrinsic noise sources (such as cell cycle asynchronicity) and can significantly affect large-scale observable properties such as cell cycle length and gene expression levels. We also explore two recent regulatory network-based models for stem cell differentiation, and find that extrinsic noise in transcription rate causes appreciable variability in the behaviour of these model systems. These results suggest that mitochondrial and transcriptional variability may be an important mechanism influencing a large variety of cellular processes and properties

    Arabidopsis cell expansion is controlled by a photothermal switch

    Get PDF
    In Arabidopsis, the seedling hypocotyl has emerged as an exemplar model system to study light and temperature control of cell expansion. Light sensitivity of this organ is epitomized in the fluence rate response where suppression of hypocotyl elongation increases incrementally with light intensity. This finely calibrated response is controlled by the photoreceptor, phytochrome B, through the deactivation and proteolytic destruction of phytochrome-interacting factors (PIFs). Here we show that this classical light response is strictly temperature dependent: a shift in temperature induces a dramatic reversal of response from inhibition to promotion of hypocotyl elongation by light. Applying an integrated experimental and mathematical modelling approach, we show how light and temperature coaction in the circuitry drives a molecular switch in PIF activity and control of cell expansion. This work provides a paradigm to understand the importance of signal convergence in evoking different or non-intuitive alterations in molecular signalling

    Molecular and genetic control of plant thermomorphogenesis

    Get PDF
    Temperature is a major factor governing the distribution and seasonal behaviour of plants. Being sessile, plants are highly responsive to small differences in temperature and adjust their growth and development accordingly. The suite of morphological and architectural changes induced by high ambient temperatures, below the heat-stress range, is collectively called thermomorphogenesis. Understanding the molecular genetic circuitries underlying thermomorphogenesis is particularly relevant in the context of climate change, as this knowledge will be key to rational breeding for thermo-tolerant crop varieties. Until recently, the fundamental mechanisms of temperature perception and signalling remained unknown. Our understanding of temperature signalling is now progressing, mainly by exploiting the model plant Arabidopsis thaliana. The transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) has emerged as a critical player in regulating phytohormone levels and their activity. To control thermomorphogenesis, multiple regulatory circuits are in place to modulate PIF4 levels, activity and downstream mechanisms. Thermomorphogenesis is integrally governed by various light signalling pathways, the circadian clock, epigenetic mechanisms and chromatin-level regulation. In this Review, we summarize recent progress in the field and discuss how the emerging knowledge in Arabidopsis may be transferred to relevant crop systems

    Chemical Reaction Fronts on Platinum Surfaces

    No full text
    In many chemical reactions catalysed on platinum surfaces it is necessary that two reactants be adsorbed simultaneously. Often one reactant is so strongly adsorbed that it blocks the adsorption of the second; such a reaction is said to be self-poisoned. An example is the oxidation of carbon monoxide, where carbon monoxide forms a strongly adsorbed monolayer which effectively blocks the adsorption and decomposition of oxygen. Photoelectron microscopy shows, however, that oxygen can penetrate the carbon monoxide film at special defect sites, typically inclusions or microdust particles, on the platinum. From these special adsorption sites the oxygen rapidly reacts with neighbouring adsorbed carbon monoxide. Reaction fronts initiate at these sites and rapidly propagate across the surface. A second type of self-poisoning occurs in decomposition reactions for which vacant surface sites are necessary; for instance, the decomposition of nitric oxide in the presence of hydrogen. A monolayer film of nitric oxide poisons the reaction not by blocking the adsorption of hydrogen, but rather by preventing the dissociation of nitric oxide which requires a neighbouring unoccupied surface site. Empty sites are provided on impurity particles which weakly adsorb nitric oxide and initiate reaction fronts. Impurity sites also initiate reaction fronts when graphite is removed from platinum by oxidation. In order to avoid self-poisoning in catalytic reactions, these studies suggest that special adsorption sites should be introduced artificially to provide vacant sites by adsorbing only weakly the reactants causing self-poisoning

    In-situ studies of heterogeneous reactions using mirror electron microscopy

    No full text
    Mirror electron microscopy (MEM) has been applied for the first time to the investigation of heterogeneous reactions on single crystal surfaces. Due to the high sensitivity of the technique to both microtopography and differences in local potentials, the step and terrace structure of a Pt(100) surface as well as the propagation features of CO/O reaction-diffusion fronts could be studied. A comparison of the results with those obtained with low energy electron microscopy (LEEM) and photoelectron emission microscopy (PEEM) shows that the unique contrast mechanism of MEM can provide valuable supplementary information
    corecore