2,558 research outputs found

    The Small Scale Velocity Dispersion of Galaxies: A Comparison of Cosmological Simulations

    Full text link
    The velocity dispersion of galaxies on small scales (r∼1h−1r\sim1h^{-1} Mpc), σ12(r)\sigma_{12}(r), can be estimated from the anisotropy of the galaxy-galaxy correlation function in redshift space. We apply this technique to ``mock-catalogs'' extracted from N-body simulations of several different variants of Cold Dark Matter dominated cosmological models to obtain results which may be consistently compared to similar results from observations. We find a large variation in the value of σ12(1h−1Mpc)\sigma_{12}(1 h^{-1} Mpc) in different regions of the same simulation. We conclude that this statistic should not be considered to conclusively rule out any of the cosmological models we have studied. We attempt to make the statistic more robust by removing clusters from the simulations using an automated cluster-removing routine, but this appears to reduce the discriminatory power of the statistic. However, studying σ12\sigma_{12} as clusters with different internal velocity dispersions are removed leads to interesting information about the amount of power on cluster and subcluster scales. We also compute the pairwise velocity dispersion directly and compare this to the values obtained using the Davis-Peebles method, and find that the agreement is fairly good. We evaluate the models used for the mean streaming velocity and the pairwise peculiar velocity distribution in the original Davis-Peebles method by comparing the models with the results from the simulations.Comment: 20 pages, uuencoded (Latex file + 8 Postscript figures), uses AAS macro

    The Pairwise Peculiar Velocity Dispersion of Galaxies: Effects of the Infall

    Get PDF
    We study the reliability of the reconstruction method which uses a modelling of the redshift distortions of the two-point correlation function to estimate the pairwise peculiar velocity dispersion of galaxies. In particular, the dependence of this quantity on different models for the infall velocity is examined for the Las Campanas Redshift Survey. We make extensive use of numerical simulations and of mock catalogs derived from them to discuss the effect of a self-similar infall model, of zero infall, and of the real infall taken from the simulation. The implications for two recent discrepant determinations of the pairwise velocity dispersion for this survey are discussed.Comment: minor changes in the discussion; accepted for publication in ApJ; 8 pages with 2 figures include

    The Stellar Mass Fundamental Plane: The virial relation and a very thin plane for slow-rotators

    Full text link
    Early-type galaxies -- slow and fast rotating ellipticals (E-SRs and E-FRs) and S0s/lenticulars -- define a Fundamental Plane (FP) in the space of half-light radius ReR_e, enclosed surface brightness IeI_e and velocity dispersion σe\sigma_e. Since IeI_e and σe\sigma_e are distance-independent measurements, the thickness of the FP is often expressed in terms of the accuracy with which IeI_e and σe\sigma_e can be used to estimate sizes ReR_e. We show that: 1) The thickness of the FP depends strongly on morphology. If the sample only includes E-SRs, then the observed scatter in ReR_e is ∼16%\sim 16\%, of which only ∼9%\sim 9\% is intrinsic. Removing galaxies with M∗<1011M⊙M_*<10^{11}M_\odot further reduces the observed scatter to ∼13%\sim 13\% (∼4%\sim 4\% intrinsic). The observed scatter increases to the ∼25%\sim 25\% usually quoted in the literature if E-FRs and S0s are added. If the FP is defined using the eigenvectors of the covariance matrix of the observables, then the E-SRs again define an exceptionally thin FP, with intrinsic scatter of only 5%5\% orthogonal to the plane. 2) The structure within the FP is most easily understood as arising from the fact that IeI_e and σe\sigma_e are nearly independent, whereas the Re−IeR_e-I_e and Re−σeR_e-\sigma_e correlations are nearly equal and opposite. 3) If the coefficients of the FP differ from those associated with the virial theorem the plane is said to be `tilted'. If we multiply IeI_e by the global stellar mass-to-light ratio M∗/LM_*/L and we account for non-homology across the population by using S\'ersic photometry, then the resulting stellar mass FP is less tilted. Accounting self-consistently for M∗/LM_*/L gradients will change the tilt. The tilt we currently see suggests that the efficiency of turning baryons into stars increases and/or the dark matter fraction decreases as stellar surface brightness increases.Comment: 13 pages, 9 figures, 3 tables, accepted for publication in MNRA

    Toxicological Evaluation of Crude Alkaloid Fraction Isolated From Indian Folklore Plant Telosma Pallida (Roxb) wg Craib Root Using Probit Value Analysis

    Get PDF
    Present study first time reported the toxicological profile of Telosma pallida (TP) crude alkaloid fraction (CAF) isolated from the root of the climber plant by brine shrimp lethality test (BLT). Telosma pallida is a perennial herb found throughout the Junagadh district and surrounding. Previous studies showed the use of these alkaloids in the inhibition of thymidylate synthetase enzymes and cell growth. Brine shrimp toxicity study was carried out with Artemia salina Leach. In this assay, brine shrimp was hatched in sea salt water and allowed to contact with various concentrations of the crude alkaloid fractions. At 500μg/ml, highest mortality was found 74.44±0.35%whereas in the case of positive control, at the dose of 50μg/ml, 80.00±0.609% mortality was found. LD50 values for CAF and test control was found to be 89.12μg/ml and 12.59μg/ml, respectively. Further in-vitro and in-vivo studies may testify the anticancer potential of this plant

    Isolation of inhibin like peptides from human placenta

    Get PDF
    Two moieties of inhibin could be obtained by chromatography of partially purified preparations of inhibin from human placenta on Sephadex G-100, G-25 and ion exchange chromatography on diethylaminoethyl Sephadex A-50. The higher molecular weight moiety (14,000) designated as HPI-H appears to be similar to inhibin from human seminal plasma. While the lower molecular weight moiety (1500) designated as HPI-L appears to be similar to that of sheep testicular inhibin. The preparations from both human term placenta and human seminal plasma inhibited the binding of [125I] human follicle stimulating hormone to rat testicular receptors. This effect of inhibins could be neutralized by antisera raised against corresponding polypeptide. Further these antibodies could neutralize endogenous inhibin resulting in 2 to 3 fold increase in serum follicle stimulating harmone levels, which could then be reversed by exogenous administration of the isolated inhibin preparations

    Nonlinear Velocity-Density Coupling: Analysis by Second-Order Perturbation Theory

    Get PDF
    Cosmological linear perturbation theory predicts that the peculiar velocity V(x)V(x) and the matter overdensity δ(x)\delta(x) at a same point xx are statistically independent quantities, as log as the initial density fluctuations are random Gaussian distributed. However nonlinear gravitational effects might change the situation. Using framework of second-order perturbation theory and the Edgeworth expansion method, we study local density dependence of bulk velocity dispersion that is coarse-grained at a weakly nonlinear scale. For a typical CDM model, the first nonlinear correction of this constrained bulk velocity dispersion amounts to ∼0.3δ\sim 0.3\delta (Gaussian smoothing) at a weakly nonlinear scale with a very weak dependence on cosmological parameters. We also compare our analytical prediction with published numerical results given at nonlinear regimes.Comment: 16 pages including 2 figures, ApJ 537 in press (July 1

    Evolution of the Pairwise Peculiar Velocity Distribution Function in Lagrangian Perturbation Theory

    Get PDF
    The statistical distribution of the radial pairwise peculiar velocity of galaxies is known to have an exponential form as implied by observations and explicitly shown in N-body simulations. Here we calculate its statistical distribution function using the Zel'dovich approximation assuming that the primordial density fluctuations are Gaussian distributed. We show that the exponential distribution is realized as a transient phenomena on megaparsec scales in the standard cold-dark-matter model.Comment: 19 pages, 8 Postscript figures, AAS LaTe

    Robust, data-driven inference in non-linear cosmostatistics

    Full text link
    We discuss two projects in non-linear cosmostatistics applicable to very large surveys of galaxies. The first is a Bayesian reconstruction of galaxy redshifts and their number density distribution from approximate, photometric redshift data. The second focuses on cosmic voids and uses them to construct cosmic spheres that allow reconstructing the expansion history of the Universe using the Alcock-Paczynski test. In both cases we find that non-linearities enable the methods or enhance the results: non-linear gravitational evolution creates voids and our photo-z reconstruction works best in the highest density (and hence most non-linear) portions of our simulations.Comment: 14 pages, 10 figures. Talk given at "Statistical Challenges in Modern Astronomy V," held at Penn Stat

    Efficient Simulations of Early Structure Formation and Reionization

    Full text link
    We present a method to construct semi-numerical ``simulations'', which can efficiently generate realizations of halo distributions and ionization maps at high redshifts. Our procedure combines an excursion-set approach with first-order Lagrangian perturbation theory and operates directly on the linear density and velocity fields. As such, the achievable dynamic range with our algorithm surpasses the current practical limit of N-body codes by orders of magnitude. This is particularly significant in studies of reionization, where the dynamic range is the principal limiting factor. We test our halo-finding and HII bubble-finding algorithms independently against N-body simulations with radiative transfer and obtain excellent agreement. We compute the size distributions of ionized and neutral regions in our maps. We find even larger ionized bubbles than do purely analytic models at the same volume-weighted mean hydrogen neutral fraction. We also generate maps and power spectra of 21-cm brightness temperature fluctuations, which for the first time include corrections due to gas bulk velocities. We find that velocities widen the tails of the temperature distributions and increase small-scale power, though these effects quickly diminish as reionization progresses. We also include some preliminary results from a simulation run with the largest dynamic range to date: a 250 Mpc box that resolves halos with masses M >~ 2.2 x10^8 M_sun. We show that accurately modeling the late stages of reionization requires such large scales. The speed and dynamic range provided by our semi-numerical approach will be extremely useful in the modeling of early structure formation and reionization.Comment: 13 pages, 10 figures; ApJ submitte
    • …
    corecore