2,427 research outputs found

    SINFONI's take on Star Formation, Molecular Gas, and Black Hole Masses in AGN

    Full text link
    We present some preliminary (half-way) results on our adaptive optics spectroscopic survey of AGN at spatial scales down to 0.085arcsec. Most of the data were obtained with SINFONI which provides integral field capability at a spectral resolution of R~4000. The themes on which we focus in this contribution are: star formation around the AGN, the properties of the molecular gas and its relation to the torus, and the mass of the black hole.Comment: 5 pages, 2 figures. To appear in Science Perspectives for 3D Spectroscopy. ESO Astrophysics Symposia. Ed by M. Kissler-Patig, M. Roth and J. Wals

    Resolving the Radio Source Background: Deeper Understanding Through Confusion

    Full text link
    We used the Karl G. Jansky Very Large Array (VLA) to image one primary beam area at 3 GHz with 8 arcsec FWHM resolution and 1.0 microJy/beam rms noise near the pointing center. The P(D) distribution from the central 10 arcmin of this confusion-limited image constrains the count of discrete sources in the 1 < S(microJy/beam) < 10 range. At this level the brightness-weighted differential count S^2 n(S) is converging rapidly, as predicted by evolutionary models in which the faintest radio sources are star-forming galaxies; and ~96$% of the background originating in galaxies has been resolved into discrete sources. About 63% of the radio background is produced by AGNs, and the remaining 37% comes from star-forming galaxies that obey the far-infrared (FIR) / radio correlation and account for most of the FIR background at lambda = 160 microns. Our new data confirm that radio sources powered by AGNs and star formation evolve at about the same rate, a result consistent with AGN feedback and the rough correlation of black hole and bulge stellar masses. The confusion at centimeter wavelengths is low enough that neither the planned SKA nor its pathfinder ASKAP EMU survey should be confusion limited, and the ultimate source detection limit imposed by "natural" confusion is < 0.01 microJy at 1.4 GHz. If discrete sources dominate the bright extragalactic background reported by ARCADE2 at 3.3 GHz, they cannot be located in or near galaxies and most are < 0.03 microJy at 1.4 GHz.Comment: 28 pages including 16 figures. ApJ accepted for publicatio

    Systematic computation of crystal field multiplets for X-ray core spectroscopies

    Full text link
    We present a new approach to computing multiplets for core spectroscopies, whereby the crystal field is constructed explicitly from the positions and charges of surrounding atoms. The simplicity of the input allows the consideration of crystal fields of any symmetry, and in particular facilitates the study of spectroscopic effects arising from low symmetry environments. The interplay between polarization directions and crystal field can also be conveniently investigated. The determination of the multiplets proceeds from a Dirac density functional atomic calculation, followed by the exact diagonalization of the Coulomb, spin-orbit and crystal field interactions for the electrons in the open shells. The eigenstates are then used to simulate X-ray Absorption Spectroscopy and Resonant Inelastic X-ray Scattering spectra. In examples ranging from high symmetry down to low symmetry environment, comparisons with experiments are done with unadjusted model parameters as well as with semi-empirically optimized ones. Furthermore, predictions for the RIXS of low-temperature MnO and for Dy in a molecular complex are proposed.Comment: Accepted for publication in Phys. Rev.

    Implications of non-feasible transformations among icosahedral hh orbitals

    Get PDF
    The symmetric group S6S_6 that permutes the six five-fold axes of an icosahedron is introduced to go beyond the simple rotations that constitute the icosahedral group II. Owing to the correspondence hdh\leftrightarrow d, the calculation of the Coulomb energies for the icosahedral configurations hNh^N based on the sequence O(5)S6S5IO(5) \supset S_6 \supset S_5 \supset I can be brought to bear on Racah's classic theory for the atomic d shell based on SO(5)SOL(3)ISO(5) \supset SO_L(3) \supset I. Among the elements of S6S_6 is the kaleidoscope operator K{\cal K} that rotates the weight space of SO(5) by π/2\pi/2. Its use explains some puzzling degeneracies in d^3 involving the spectroscopic terms ^2P, ^2F, ^2G and ^2H.Comment: Tentatively scheduled to appear in Physical Preview Letters Apr 5, 99. Revtex, 1 ps figur

    Compact continuum source-finding for next generation radio surveys

    Full text link
    We present a detailed analysis of four of the most widely used radio source finding packages in radio astronomy, and a program being developed for the Australian Square Kilometer Array Pathfinder (ASKAP) telescope. The four packages; SExtractor, SFind, IMSAD and Selavy are shown to produce source catalogues with high completeness and reliability. In this paper we analyse the small fraction (~1%) of cases in which these packages do not perform well. This small fraction of sources will be of concern for the next generation of radio surveys which will produce many thousands of sources on a daily basis, in particular for blind radio transients surveys. From our analysis we identify the ways in which the underlying source finding algorithms fail. We demonstrate a new source finding algorithm Aegean, based on the application of a Laplacian kernel, which can avoid these problems and can produce complete and reliable source catalogues for the next generation of radio surveys.Comment: 14 pages, 12 figures, accepted for publication in MNRA

    Alternative Mathematical Technique to Determine LS Spectral Terms

    Full text link
    We presented an alternative computational method for determining the permitted LS spectral terms arising from lNl^N electronic configurations. This method makes the direct calculation of LS terms possible. Using only basic algebra, we derived our theory from LS-coupling scheme and Pauli exclusion principle. As an application, we have performed the most complete set of calculations to date of the spectral terms arising from lNl^N electronic configurations, and the representative results were shown. As another application on deducing LS-coupling rules, for two equivalent electrons, we deduced the famous Even Rule; for three equivalent electrons, we derived a new simple rule.Comment: Submitted to Phys. Rev.

    Multipole decomposition of LDA+UU energy and its application to actinides compounds

    Full text link
    A general reformulation of the exchange energy of 5f5f-shell is applied in the analysis of the magnetic structure of various actinides compounds in the framework of LDA+U method. The calculations are performed in an efficient scheme with essentially only one free parameter, the screening length. The results are analysed in terms of different polarisation channels, due to different multipoles. Generally it is found that the spin-orbital polarisation is dominating. This can be viewed as a strong enhancement of the spin-orbit coupling in these systems. This leads to a drastic decrease in spin polarisation, in accordance with experiments. The calculations are able to correctly differentiate magnetic and non-magnetic Pu system. Finally, in all magnetic systems a new multipolar order is observed, whose polarisation energy is often larger in magnitude than that of spin polarisation.Comment: Fixed some references and picture

    Convergence of expansions in Schr\"odinger and Dirac eigenfunctions, with an application to the R-matrix theory

    Full text link
    Expansion of a wave function in a basis of eigenfunctions of a differential eigenvalue problem lies at the heart of the R-matrix methods for both the Schr\"odinger and Dirac particles. A central issue that should be carefully analyzed when functional series are applied is their convergence. In the present paper, we study the properties of the eigenfunction expansions appearing in nonrelativistic and relativistic RR-matrix theories. In particular, we confirm the findings of Rosenthal [J. Phys. G: Nucl. Phys. 13, 491 (1987)] and Szmytkowski and Hinze [J. Phys. B: At. Mol. Opt. Phys. 29, 761 (1996); J. Phys. A: Math. Gen. 29, 6125 (1996)] that in the most popular formulation of the R-matrix theory for Dirac particles, the functional series fails to converge to a claimed limit.Comment: Revised version, accepted for publication in Journal of Mathematical Physics, 21 pages, 1 figur

    Radio continuum and far-infrared emission from the galaxies in the Eridanus group

    Full text link
    The Eridanus galaxies follow the well-known radio-FIR correlation. Majority (70%) of these galaxies have their star formation rates below that of the Milky Way. The galaxies having a significant excess of radio emission are identified as low luminosity AGNs based on their radio morphologies obtained from the GMRT observations. There are no powerful AGNs (L{20cm} > 10^{23} W Hz^{-1}) in the group. The two most far-infrared and radio luminous galaxies in the group have optical and HI morphologies suggestive of recent tidal interactions. The Eridanus group also has two far-infrared luminous but radio-deficient galaxies. It is believed that these galaxies are observed within a few Myr of the onset of an intense star formation episode after being quiescent for at least a 100 Myr. The upper end of the radio luminosity distribution of the Eridanus galaxies (L_{20cm} ~ 10^{22} W Hz^{-1}) is consistent with that of the field galaxies, other groups, and late-type galaxies in nearby clusters.Comment: 16 pages; Accepted for publication in Journal of Astroph. & Astron. March, 200
    corecore