12 research outputs found
Limit theorems for self-similar tilings
We study deviation of ergodic averages for dynamical systems given by
self-similar tilings on the plane and in higher dimensions. The main object of
our paper is a special family of finitely-additive measures for our systems. An
asymptotic formula is given for ergodic integrals in terms of these
finitely-additive measures, and, as a corollary, limit theorems are obtained
for dynamical systems given by self-similar tilings.Comment: 36 pages; some corrections and improved exposition, especially in
Section 4; references adde
Hypergraph models of biological networks to identify genes critical to pathogenic viral response
Background: Representing biological networks as graphs is a powerful approach to reveal underlying patterns, signatures, and critical components from high-throughput biomolecular data. However, graphs do not natively capture the multi-way relationships present among genes and proteins in biological systems. Hypergraphs are generalizations of graphs that naturally model multi-way relationships and have shown promise in modeling systems such as protein complexes and metabolic reactions. In this paper we seek to understand how hypergraphs can more faithfully identify, and potentially predict, important genes based on complex relationships inferred from genomic expression data sets. Results: We compiled a novel data set of transcriptional host response to pathogenic viral infections and formulated relationships between genes as a hypergraph where hyperedges represent significantly perturbed genes, and vertices represent individual biological samples with specific experimental conditions. We find that hypergraph betweenness centrality is a superior method for identification of genes important to viral response when compared with graph centrality. Conclusions: Our results demonstrate the utility of using hypergraphs to represent complex biological systems and highlight central important responses in common to a variety of highly pathogenic viruses
Effective-Range Expansion of the Neutron-Deuteron Scattering Studied by a Quark-Model Nonlocal Gaussian Potential
The S-wave effective range parameters of the neutron-deuteron (nd) scattering
are derived in the Faddeev formalism, using a nonlocal Gaussian potential based
on the quark-model baryon-baryon interaction fss2. The spin-doublet low-energy
eigenphase shift is sufficiently attractive to reproduce predictions by the
AV18 plus Urbana three-nucleon force, yielding the observed value of the
doublet scattering length and the correct differential cross sections below the
deuteron breakup threshold. This conclusion is consistent with the previous
result for the triton binding energy, which is nearly reproduced by fss2
without reinforcing it with the three-nucleon force.Comment: 21 pages, 6 figures and 6 tables, submitted to Prog. Theor. Phy