2,236 research outputs found

    Structure of the X-ray Emission from the Jet of 3C 273

    Get PDF
    We present images from five observations of the quasar 3C 273 with the Chandra X-ray Observatory. The jet has at least four distinct features which are not resolved in previous observations. The first knot in the jet (A1) is very bright in X-rays. Its X-ray spectrum is well fitted with a power law with alpha = 0.60 +/- 0.05. Combining this measurement with lower frequency data shows that a pure synchrotron model can fit the spectrum of this knot from 1.647 GHz to 5 keV (over nine decades in energy) with alpha = 0.76 +/- 0.02, similar to the X-ray spectral slope. Thus, we place a lower limit on the total power radiated by this knot of 1.5e43 erg/s; substantially more power may be emitted in the hard X-ray and gamma-ray bands. Knot A2 is also detected and is somewhat blended with knot B1. Synchrotron emission may also explain the X-ray emission but a spectral bend is required near the optical band. For knots A1 and B1, the X-ray flux dominates the emitted energy. For the remaining optical knots (C through H), localized X-ray enhancements that might correspond to the optical features are not clearly resolved. The position angle of the jet ridge line follows the optical shape with distinct, aperiodic excursions of +/-1 deg from a median value of -138.0deg. Finally, we find X-ray emission from the ``inner jet'' between 5 and 10" from the core.Comment: 10 pages, 5 figures; accepted for publication in the Astrophysical Journal Letters. For the color image, see fig1.ps or http://space.mit.edu/~hermanm/papers/3c273/fig1.jp

    Formation of molecular hydrogen on analogues of interstellar dust grains: experiments and modelling

    Full text link
    Molecular hydrogen has an important role in the early stages of star formation as well as in the production of many other molecules that have been detected in the interstellar medium. In this review we show that it is now possible to study the formation of molecular hydrogen in simulated astrophysical environments. Since the formation of molecular hydrogen is believed to take place on dust grains, we show that surface science techniques such as thermal desorption and time-of-flight can be used to measure the recombination efficiency, the kinetics of reaction and the dynamics of desorption. The analysis of the experimental results using rate equations gives useful insight on the mechanisms of reaction and yields values of parameters that are used in theoretical models of interstellar cloud chemistry.Comment: 23 pages, 7 figs. Published in the J. Phys.: Conf. Se

    Existence of Large Scale Synchrotron X-ray Jets in Radio-loud Active Galactic Nuclei

    Full text link
    In this paper, analytical arguments are presented that there exists a synchrotron X-ray jet on large scales in most radio-loud AGNs, based on the knowledge of the nature and physics of blazars. In blue blazars and blue-blazar-like radio galaxies, the large scale X-ray jet may get faint along the jet, while in most red blazars and red-blazar-like radio galaxies, the X-ray jet is bright on 10 kpc scales whether the jet is highly relativistic on large scales or not. In extreme red blazars in which the jet is still highly relativistic on large scales and the synchrotron peak of the inner jet lies in the infrared bands, the X-ray jet may get fainter along the jet from 10 kpc to 100 kpc scales while the optical and IR jet gets brighter. The predictions can be tested with the ongoing observations of the Chandra X-ray Observatory.Comment: 4 pages, accepted by ApJ Letter

    Theory of Non-Reciprocal Optical Effects in Antiferromagnets: The Case Cr_2O_3

    Full text link
    A microscopic model of non-reciprocal optical effects in antiferromagnets is developed by considering the case of Cr_2O_3 where such effects have been observed. These effects are due to a direct coupling between light and the antiferromagnetic order parameter. This coupling is mediated by the spin-orbit interaction and involves an interplay between the breaking of inversion symmetry due to the antiferromagnetic order parameter and the trigonal field contribution to the ligand field at the magnetic ion. We evaluate the matrix elements relevant for the non-reciprocal second harmonic generation and gyrotropic birefringence.Comment: accepted for publication in Phys. Rev.

    Frustration induced Raman scattering in CuGeO_3

    Full text link
    We present experimental data for the Raman intensity in the spin-Peierls compound CuGeO_3 and theoretical calculations from a one-dimensional frustrated spin model. The theory is based on (a) exact diagonalization and (b) a recently developed solitonic mean field theory. We find good agreement between the 1D-theory in the homogeneous phase and evidence for a novel dimerization of the Raman operator in the spin-Peierls state. Finally we present evidence for a coupling between the interchain exchange, the spin-Peierls order parameter and the magnetic excitations along the chains.Comment: Phys. Rev. B, Rapid Comm, in Pres

    RHIC physics overview

    Full text link
    The results from data taken during the last several years at the Relativistic Heavy-Ion Collider (RHIC) will be reviewed in the paper. Several selected topics that further our understanding of constituent quark scaling, jet quenching and color screening effect of heavy quarkonia in the hot dense medium will be presented. Detector upgrades will further probe the properties of Quark Gluon Plasma. Future measurements with upgraded detectors will be presented. The discovery perspectives from future measurements will also be discussed.Comment: 9 pages, 4 figures, invited review article, published by Frontier of Physics in Chin

    Radial Velocity Studies of Close Binary Stars. XI

    Get PDF
    Radial-velocity measurements and sine-curve fits to the orbital radial velocity variations are presented for ten close binary systems: DU Boo, ET Boo, TX Cnc, V1073 Cyg, HL Dra, AK Her, VW LMi, V566 Oph, TV UMi and AG Vir. By this contribution, the DDO program has reached the point of 100 published radial velocity orbits. The radial velocities have been determined using an improved fitting technique which uses rotational profiles to approximate individual peaks in broadening functions. Three systems, ET Boo, VW LMi and TV UMi, were found to be quadruple while AG Vir appears to be a spectroscopic triple. ET Boo, a member of a close visual binary with Pvis=113P_{vis} = 113 years, was previously known to be a multiple system, but we show that the second component is actually a close, non-eclipsing binary. The new observations enabled us to determine the spectroscopic orbits of the companion, non-eclipsing pairs in ET Boo and VW LMi. The particularly interesting case is VW LMi, where the period of the mutual revolution of the two spectroscopic binaries is only 355 days. While most of the studied eclipsing pairs are contact binaries, ET Boo is composed of two double-lined detached binaries and HL Dra is single-lined detached or semi-detached system. Five systems of this group were observed spectroscopically before: TX Cnc, V1073 Cyg, AK Her (as a single-lined binary), V566 Oph, AG Vir, but our new data are of much higher quality than the previous studies.Comment: Accepted by AJ, August 2006, 10 figures, 3 table

    ASCR/HEP Exascale Requirements Review Report

    Full text link
    This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude -- and in some cases greater -- than that available currently. 2) The growth rate of data produced by simulations is overwhelming the current ability, of both facilities and researchers, to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. 3) Data rates and volumes from HEP experimental facilities are also straining the ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. 4) A close integration of HPC simulation and data analysis will aid greatly in interpreting results from HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. 5) Long-range planning between HEP and ASCR will be required to meet HEP's research needs. To best use ASCR HPC resources the experimental HEP program needs a) an established long-term plan for access to ASCR computational and data resources, b) an ability to map workflows onto HPC resources, c) the ability for ASCR facilities to accommodate workflows run by collaborations that can have thousands of individual members, d) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, e) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.Comment: 77 pages, 13 Figures; draft report, subject to further revisio
    corecore