3,891 research outputs found
A study of model deflection measurement techniques applicable within the national transonic facility
Moire contouring, scanning interferometry, and holographic contouring were examined to determine their practicality and potential to meet performance requirements for a model deflection sensor. The system envisioned is to be nonintrusive, and is to be capable of mapping or contouring the surface of a 1-meter by 1-meter model with a resolution of 50 to 100 points. The available literature was surveyed, and computations and analyses were performed to establish specific performance requirements, as well as the capabilities and limitations of such a sensor within the geometry of the NTF section test section. Of the three systems examined, holographic contouring offers the most promise. Unlike Moire, it is not hampered by limited contour spacing and extraneous fringes. Its transverse resolution can far exceed the limited point sampling resolution of scanning heterodyne interferometry. The availability of the ruby laser as a high power, pulsed, multiple wavelength source makes such a system feasible within the NTF
Mapping of Materials Stress with Ultrasonic Tomography
It is known that internal stress concentrations can give rise to microcracks which then grow when the structure is subjected to external forces. It has also been found that the velocity of sound is altered as it propagates through a region of stress. In this paper we discuss a technique called Computer Assisted Tomography (CAT) and describe an application that provides pictures of stress fields. We report the results of both simulated and experimental models used to evaluate the technique. We conclude that the CAT approach has great potential for locating and mapping residual stress in metals
Inversion of Eddy Current Data Using Holographic Principles
It has proven possible to convert eddy current data associated with flaws to images of these flaws using holographic principles [2,3] because electromagnetic waves propagate in metals [1] and because these waves have subsonic velocities at eddy current frequencies. The purpose of this paper is to review and clarify the physical and mathematical basis for this method of analyzing eddy current data
Mapping Residual Stress Fields by Ultrasonic Tomography
It is well known that the velocity of sound in a solid is affected by stress. This phenomenon is a third order effect, and has been used primarily as a research tool to determine the Lame and Murnaghan elastic constants for various materials. A few preliminary attempts to use it for stress analysis have also been made. In this paper we describe the first attempt to combine this effect with the newly revived mathematical technique known as Computerized Axial Tomography (CAT) to provide quantitative maps of velocity within thick metal sections. From these maps , it is possible to infer the state of residual stress within the material. The technique requires that time-of-flight profiles through a section of the solid be made in a number of angular directions. This is equivalent to measuring the velocity through the solid from many different directions in a single plane. The computer takes the set of data so gathered and inverts it to produce a cross-sectional plot of velocity versus position. We have succeeded in mapping velocity anomalies as low as 0.21% and estimate that 0.5% is technically feasible. This kind of sensitivity should allow us to map stress anomalies as low as 1000 psi/inch in steel. We will also describe an experiment with a mild steel section in which we inserted an oversized pin by shrink fitting. The reconstruction clearly shows the high compressive stress within the pin, and the tensile .stress in the metal surrounding the pin
Resolving velocity space dynamics in continuum gyrokinetics
Many plasmas of interest to the astrophysical and fusion communities are
weakly collisional. In such plasmas, small scales can develop in the
distribution of particle velocities, potentially affecting observable
quantities such as turbulent fluxes. Consequently, it is necessary to monitor
velocity space resolution in gyrokinetic simulations. In this paper, we present
a set of computationally efficient diagnostics for measuring velocity space
resolution in gyrokinetic simulations and apply them to a range of plasma
physics phenomena using the continuum gyrokinetic code GS2. For the cases
considered here, it is found that the use of a collisionality at or below
experimental values allows for the resolution of plasma dynamics with
relatively few velocity space grid points. Additionally, we describe
implementation of an adaptive collision frequency which can be used to improve
velocity space resolution in the collisionless regime, where results are
expected to be independent of collision frequency.Comment: 20 pages, 11 figures, submitted to Phys. Plasma
Pair distribution function and structure factor of spherical particles
The availability of neutron spallation-source instruments that provide total
scattering powder diffraction has led to an increased application of real-space
structure analysis using the pair distribution function. Currently, the
analytical treatment of finite size effects within pair distribution refinement
procedures is limited. To that end, an envelope function is derived which
transforms the pair distribution function of an infinite solid into that of a
spherical particle with the same crystal structure. Distributions of particle
sizes are then considered, and the associated envelope function is used to
predict the particle size distribution of an experimental sample of gold
nanoparticles from its pair distribution function alone. Finally, complementing
the wealth of existing diffraction analysis, the peak broadening for the
structure factor of spherical particles, expressed as a convolution derived
from the envelope functions, is calculated exactly for all particle size
distributions considered, and peak maxima, offsets, and asymmetries are
discussed.Comment: 7 pages, 6 figure
Doping nature of native defects in 1T-TiSe2
The transition metal dichalcogenide 1T-TiSe2 is a quasi two-dimensional
layered material with a charge density wave (CDW) transition temperature of
TCDW 200 K. Self-doping effects for crystals grown at different temperatures
introduce structural defects, modify the temperature dependent resistivity and
strongly perturbate the CDW phase. Here we study the structural and doping
nature of such native defects combining scanning tunneling
microscopy/spectroscopy and ab initio calculations. The dominant native single
atom dopants we identify in our single crystals are intercalated Ti atoms, Se
vacancies and Se substitutions by residual iodine and oxygen.Comment: 5 pages, 3 figure
- …