2,010 research outputs found
Wage Theft in Construction is the Greatest Form of Theft and We Do Nothing About it
I looked at the construction industry in New York City and state to analyze the prevalence of wage theft. The unaccounted and accounted for wage theft in the industry directly correlates with its low-wage and immigrant workforce
Learning the dynamics of cell-cell interactions in confined cell migration
The migratory dynamics of cells in physiological processes, ranging from
wound healing to cancer metastasis, rely on contact-mediated cell-cell
interactions. These interactions play a key role in shaping the stochastic
trajectories of migrating cells. While data-driven physical formalisms for the
stochastic migration dynamics of single cells have been developed, such a
framework for the behavioral dynamics of interacting cells still remains
elusive. Here, we monitor stochastic cell trajectories in a minimal
experimental cell collider: a dumbbell-shaped micropattern on which pairs of
cells perform repeated cellular collisions. We observe different characteristic
behaviors, including cells reversing, following and sliding past each other
upon collision. Capitalizing on this large experimental data set of coupled
cell trajectories, we infer an interacting stochastic equation of motion that
accurately predicts the observed interaction behaviors. Our approach reveals
that interacting non-cancerous MCF10A cells can be described by repulsion and
friction interactions. In contrast, cancerous MDA-MB-231 cells exhibit
attraction and anti-friction interactions, promoting the predominant relative
sliding behavior observed for these cells. Based on these experimentally
inferred interactions, we show how this framework may generalize to provide a
unifying theoretical description of the diverse cellular interaction behaviors
of distinct cell types
Use of ultraviolet C (UVC) radiation to inactivate infectious hematopoietic necrosis virus (IHNV) and viral haemorrhagic septicaemia virus (VHSV) in fish processing plant effluent
We determined the stability of infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) suspended in either fish processing plant effluent blood water (EBW) or culture media and examined the effectiveness of UVC radiation to inactivate IHNV and VHSV suspended in both solutions. Without exposure to UVC, IHNV and VHSV were maintained in 4°C blood water for up to 48 hours without significant reduction in virus titer. However when exposed to UVC radiation using a low pressure mercury vapour lamp collimated beam, IHNV and VHSV were inactivated, and the efficacy of UVC radiation was dependent upon the solution and virus type being treated. A 3-log reduction for VHSV and IHNV in culture media was achieved at 3.28 and 3.84 mJ cm-2, respectively. The UV dose needed for a 3-log reduction of VHSV in EBW was 3.82 mJ cm-2. However, exposure of IHNV in EBW to the maximum UVC dose tested (4.0 mJ cm-2) only led to a 2.26-log-reduction. Factors such as particle size, and possible association of viruses with suspended EBW particulate, were not investigated in this study, but may have contributed to the difference in UVC effectiveness. Future work should emphasize improved filtration methods prior to UV treatment of processing plant EBW at an industrial scale.<br /
Rare earth elements materials production from apatite ores
The paper deals with the study of processing apatite ores with nitric acid and extraction of the rare earth elements. The rare earth elements can be successfully separated and recovered by extraction from the nitrate- phosphate solution, being an tributyl phosphate as extraction agent. The developed scheme of the processing apatite concentrate provides obtaining rare earth concentrates with high qualitative characteristics
Extraction of rare earth elements from hydrate-phosphate precipitates of apatite processing
The features of extraction of rare earth elements (REE) were considered from hydrate-phosphate precipitates of REE of apatite processing by nitric acid technology. The preliminary purification of nitrate solution of REE from impurities of titanium, aluminum, iron, uranium and thorium was suggested to obtain stable solutions not forming precipitates. Washing the extract was recommended with the evaporated reextract that allows to obtain directly on the cascade of REE extraction the concentrated solutions suitable for the separation into groups by the extraction method. Technical decisions were suggested for the separation of REE in groups without the use of salting-out agent
Aerobic granules in a sequencing batch bioreactor under fluoroquinolone shock loadings
The growing occurrence of human and veterinary pharmaceuticals in the environment is causing increasing concern. Fluoroquinolones (FQs) are broad-spectrum antibiotics that play an important role in the treatment of serious bacterial infections. Antibiotics can reach wastewater treatment plants (WWTP) from different routes. Domestic effluents are considered the major contributor but effluents from pharmaceutical industries and hospitals are also of great concern. Granular sequencing batch reactors (SBR) constitute a novel biofilm technology for wastewater treatment extremely promising for the treatment of effluents containing toxic compounds. Aerobic granular sludge has several advantages over activated sludge, such as excellent settling properties, high biomass retention, ability to deal with high organic loading rates and to perform simultaneously diverse biological processes, such as Chemical Oxygen Demand (COD), N and P removal.
This study focused on the effect of intermittent and alternating feeding of different FQs, namely Ofloxacin (OFL), Norfloxacin (NOR) and Ciprofloxacin (CPF), on bioreactor performance and diversity of the microbial population. Activated sludge from a municipal WWTP was used as the inoculum for the start-up of the SBR. The aerobic granules grew under aerobic conditions and after ca. 3 months of reactor operation stable granules were observed.
The FQs affected the granular sludge in terms of morphology, causing a decrease in granule size. The granules started to disintegrate and an increase in the levels of solids in the effluent after exposure to FQs occurred due to wash-out of unstable granules, concomitant with a decrease in the SBR bed volume.
The effect of the target fluorinated pharmaceuticals on the main biological processes occurring in the granular sludge SBR, such as nitrification and phosphate removal, was evaluated. Ammonium and nitrite were practically not detected in the treated effluent (maximum concentration of 0.03 and 0.01 mM for NH4+-N and NO2--N, respectively) indicating that neither ammonia oxidizing bacteria (AOB) nor nitrite oxidizing bacteria (NOB) were inhibited by the presence of the FQs, whereas phosphate removal was affected. The phosphate released into the bulk liquid by the phosphate accumulating organisms (PAO) during the anaerobic feeding period was not completely removed and the levels of phosphate in the bioreactor effluent increased. The organic removal, measured by COD, was not markedly affected by FQ shock loads.
Changes in the bacterial community from aerobic granules related to FQs shock loadings were examined using denaturing gradient electrophoresis (DGGE) of 16S rRNA. The clustering analysis suggested that samples clustered according to the temporal factor. The gradual succession observed in the bacterial assemblage composition was related with the exposure to FQs. Also, the microbial population present in the aerobic granules was also investigated by culture-dependent methods. Several bacterial isolates belonging to α- and ɣ-branch of the Proteobacteria phylum were retrieved from the granules.
After ca. 2 months without FQs exposure, the SBR bed volume was recovered and the solid content at the bioreactor effluent returned to normal levels
Distinct or shared actions of peptide family isoforms: II. Multiple pyrokinins exert similar effects in the lobster stomatogastric nervous system
Many neuropeptides are members of peptide families, with multiple structurally similar isoforms frequently found even within a single species. This raises the question of whether the individual peptides serve common or distinct functions. In the accompanying paper, we found high isoform specificity in the responses of the lobster (Homarus americanus) cardiac neuromuscular system to members of the pyrokinin peptide family: only one of five crustacean isoforms showed any bioactivity in the cardiac system. Because previous studies in other species had found little isoform specificity in pyrokinin actions, we examined the effects of the same five crustacean pyrokinins on the lobster stomatogastric nervous system (STNS). In contrast to our findings in the cardiac system, the effects of the five pyrokinin isoforms on the STNS were indistinguishable: they all activated or enhanced the gastric mill motor pattern, but did not alter the pyloric pattern. These results, in combination with those from the cardiac ganglion, suggest that members of a peptide family in the same species can be both isoform specific and highly promiscuous in their modulatory capacity. The mechanisms that underlie these differences in specificity have not yet been elucidated; one possible explanation, which has yet to be tested, is the presence and differential distribution of multiple receptors for members of this peptide family
- …