2,122 research outputs found

    Rigidity of compact Riemannian spin Manifolds with Boundary

    Full text link
    In this article, we prove new rigidity results for compact Riemannian spin manifolds with boundary whose scalar curvature is bounded from below by a non-positive constant. In particular, we obtain generalizations of a result of Hang-Wang \cite{hangwang1} based on a conjecture of Schroeder and Strake \cite{schroeder}.Comment: English version of "G\'eom\'etrie spinorielle extrins\`eque et rigidit\'es", Corollary 6 in Section 3 added, to appear in Letters Math. Phy

    Automated Classification of Changes of Direction in Soccer Using Inertial Measurement Units

    Get PDF
    Changes of direction (COD) are an important aspect of soccer match play. Understanding the physiological and biomechanical demands on players in games allows sports scientists to effectively train and rehabilitate soccer players. COD are conventionally recorded using manually annotated time-motion video analysis which is highly time consuming, so more time-efficient approaches are required. The aim was to develop an automated classification model based on multi-sensor player tracking device data to detect COD > 45°. Video analysis data and individual multi-sensor player tracking data (GPS, accelerometer, gyroscopic) for 23 academy-level soccer players were used. A novel ‘GPS-COD Angle’ variable was developed and used in model training; along with 24 GPS-derived, gyroscope and accelerometer variables. Video annotation was the ground truth indicator of occurrence of COD > 45°. The random forest classifier using the full set of features demonstrated the highest accuracy (AUROC = 0.957, 95% CI = 0.956–0.958, Sensitivity = 0.941, Specificity = 0.772. To balance sensitivity and specificity, model parameters were optimised resulting in a value of 0.889 for both metrics. Similarly high levels of accuracy were observed for random forest models trained using a reduced set of features, accelerometer-derived variables only, and gyroscope-derived variables only. These results point to the potential effectiveness of the novel methodology implemented in automatically identifying COD in soccer players

    The development of visuotactile congruency effects for sequences of events.

    Get PDF
    Abstract Sensitivity to the temporal coherence of visual and tactile signals increases perceptual reliability and is evident during infancy. However, it is not clear how, or whether, bidirectional visuotactile interactions change across childhood. Furthermore, no study has explored whether viewing a body modulates how children perceive visuotactile sequences of events. Here, children aged 5–7 years (n = 19), 8 and 9 years (n = 21), and 10–12 years (n = 24) and adults (n = 20) discriminated the number of target events (one or two) in a task-relevant modality (touch or vision) and ignored distractors (one or two) in the opposing modality. While participants performed the task, an image of either a hand or an object was presented. Children aged 5–7 years and 8 and 9 years showed larger crossmodal interference from visual distractors when discriminating tactile targets than the converse. Across age groups, this was strongest when two visual distractors were presented with one tactile target, implying a "fission-like" crossmodal effect (perceiving one event as two events). There was no influence of visual context (viewing a hand or non-hand image) on visuotactile interactions for any age group. Our results suggest robust interference from discontinuous visual information on tactile discrimination of sequences of events during early and middle childhood. These findings are discussed with respect to age-related changes in sensory dominance, selective attention, and multisensory processing

    Restricted and unrestricted Hartree-Fock calculations of conductance for a quantum point contact

    Full text link
    Very short quantum wires (quantum contacts) exhibit a conductance structure at a value of conductance close to 0.7×2e2/h0.7 \times 2e^2/h. It is believed that the structure arises due to the electron-electron interaction, and it is also related to electron spin. However details of the mechanism of the structure are not quite clear. Previously we approached the problem within the restricted Hartree-Fock approximation. This calculation demonstrated a structure similar to that observed experimentally. In the present work we perform restricted and unrestricted Hartree-Fock calculations to analyze the validity of the approximations. We also consider dependence of the effect on the electron density in leads. The unrestricted Hartree-Fock method allows us to analyze trapping of the single electron within the contact. Such trapping would result in the Kondo model for the ``0.7 structure''. The present calculation confirms the spin-dependent bound state picture and does not confirm the Kondo model scenario.Comment: 6 pages, 9 figure

    Measurement & Analysis of the Temporal Discrimination Threshold Applied to Cervical Dystonia

    Get PDF
    The temporal discrimination threshold (TDT) is the shortest time interval at which an observer can discriminate two sequential stimuli as being asynchronous (typically 30-50 ms). It has been shown to be abnormal (prolonged) in neurological disorders, including cervical dystonia, a phenotype of adult onset idiopathic isolated focal dystonia. The TDT is a quantitative measure of the ability to perceive rapid changes in the environment and is considered indicative of the behavior of the visual neurons in the superior colliculus, a key node in covert attentional orienting. This article sets out methods for measuring the TDT (including two hardware options and two modes of stimuli presentation). We also explore two approaches of data analysis and TDT calculation. The application of the assessment of temporal discrimination to the understanding of the pathogenesis of cervical dystonia and adult onset idiopathic isolated focal dystonia is also discussed

    Menstrual Cycle and the Temporal Discrimination Threshold

    Get PDF
    The temporal discrimination threshold (TDT) is a proposed pre-clinical biomarker (endophenotype) for adult onset isolated focal dystonia (AOIFD). Age- and sex-related effects on temporal discrimination demonstrate that women, before the age of 40 years, have faster temporal discrimination than men but their TDTs worsen with age at almost three times the rate of men. Thus after 40 years the TDT in women is progressively worse than in men. AOIFD is an increasingly female-predominant disorder after the age of 40; it is not clear whether this age-related sexually-dimorphic difference observed for both the TDT and sex ratio at disease onset in AOIFD is a hormonal or chromosomal effect. The aim of this study was to examine temporal discrimination at weekly intervals during two consecutive menstrual cycles in 14 healthy female volunteers to determine whether physiological hormonal changes affected temporal discrimination. We observed no significant differences in weekly temporal discrimination threshold values during the menstrual cycles and no significant correlation with the menstrual cycle stage. This observed stability of temporal discrimination during cyclical hormonal change raises interesting questions concerning the age-related sexually-dimorphic decline observed in temporal discrimination. Our findings pave the way for future studies exploring potential pathomechanisms for this age-related deterioration

    Interpreting physical performance in professional soccer match-play: Should we be more pragmatic in our approach?

    Get PDF
    Academic and practitioner interest in the physical performance of male professional soccer players in the competition setting determined via time-motion analyses has grown substantially over the last four decades leading to a substantial body of published research and aiding development of a more systematic evidence-based framework for physical conditioning. Findings have forcibly shaped contemporary opinions in the sport with researchers and practitioners frequently emphasising the important role that physical performance plays in match outcomes. Time-motion analyses have also influenced practice as player conditioning programmes can be tailored according to the different physical demands identified across individual playing positions. Yet despite a more systematic approach to physical conditioning, data indicate that even at the very highest standards of competition, the contemporary player is still susceptible to transient and end-game fatigue. Over the course of this article, the author suggests that a more pragmatic approach to interpreting the current body of time-motion analysis data and its application in the practical setting is nevertheless required. Examples of this are addressed using findings in the literature to examine: a) the association between competitive physical performance and ‘success’ in professional soccer, b) current approaches to interpreting differences in time-motion analysis data across playing positions and, c) whether data can realistically be used to demonstrate the occurrence of fatigue in match-play. Gaps in the current literature and directions for future research are also identified

    A Comparison of Stimulus Presentation Methods in Temporal Discrimination Testing

    Get PDF
    The temporal discrimination threshold (TDT) is the shortest time interval at which an individual detects two stimuli to be asynchronous (normal  =  30-50 ms). It has been shown to be abnormal in patients with disorders affecting the basal ganglia including adult onset idiopathic focal dystonia (AOIFD). Up to 97% of patients have an abnormal TDT with age- and sex-related penetrance in unaffected relatives, demonstrating an autosomal dominant inheritance pattern. These findings support the use of the TDT as a pre-clinical biomarker for AOIFD. The usual stimulus presentation method involves the presentation of progressively asynchronous stimuli; when three sequential stimuli are reported asynchronous is taken as a participant\u27s TDT. To investigate the robustness of the \u27staircase\u27 method of presentation, we introduced a method of randomised presentation order to explore any potential \u27learning effect\u27 that may be associated with this existing method. The aim of this study was to investigate differences in temporal discrimination using two methods of stimulus presentation. Thirty healthy volunteers were recruited to the study (mean age 33.73  ±  3.4 years). Visual and tactile TDT testing using a staircase and randomised method of presentation order was carried out in a single session. There was a strong relationship between the staircase and random method for TDT values. This observed consistency between testing methods suggests that the existing experimental approach is a robust method of recording an individual\u27s TDT. In addition, our newly devised randomised paradigm is a reproducible and more efficient method for data acquisition in the clinic setting. However, the two presentation methods yield different absolute TDT results and either of the two methods should be used uniformly in all participants in any one particular study. doi: 10.1088/1361-6579/38/2/N5
    • …
    corecore