3,039 research outputs found

    The Potential of Learned Index Structures for Index Compression

    Full text link
    Inverted indexes are vital in providing fast key-word-based search. For every term in the document collection, a list of identifiers of documents in which the term appears is stored, along with auxiliary information such as term frequency, and position offsets. While very effective, inverted indexes have large memory requirements for web-sized collections. Recently, the concept of learned index structures was introduced, where machine learned models replace common index structures such as B-tree-indexes, hash-indexes, and bloom-filters. These learned index structures require less memory, and can be computationally much faster than their traditional counterparts. In this paper, we consider whether such models may be applied to conjunctive Boolean querying. First, we investigate how a learned model can replace document postings of an inverted index, and then evaluate the compromises such an approach might have. Second, we evaluate the potential gains that can be achieved in terms of memory requirements. Our work shows that learned models have great potential in inverted indexing, and this direction seems to be a promising area for future research.Comment: Will appear in the proceedings of ADCS'1

    Partitioning and Additivity of the Chemical Bond

    Get PDF
    Changes in the electronic energies of various molecules on substitution of a hydrogen atom by another a\u27tom or group can be shown to be similar in magnitude. By considering a variety ofrecipient molecules, both neutral and cationic, it is shown that the substitution energy for cyano and isocyano groups can be correlated with the charge on the substituent group in the substituted molecule

    Binary planetary nebulae nuclei towards the Galactic bulge. II. A penchant for bipolarity and low-ionisation structures

    Full text link
    Considerable effort has been applied towards understanding the precise shaping mechanisms responsible for the diverse range of morphologies exhibited by planetary nebulae (PNe). A binary companion is increasingly gaining support as a dominant shaping mechanism, however morphological studies of the few PNe that we know for certain were shaped by binary evolution are scarce or biased. Newly discovered binary central stars (CSPN) from the OGLE-III photometric variability survey have significantly increased the sample of post common-envelope (CE) nebulae available for morphological analysis. We present Gemini South narrow-band images for most of the new sample to complement existing data in a qualitative morphological study of 30 post-CE nebulae. Nearly 30% of nebulae have canonical bipolar morphologies, however this rises to 60% once inclination effects are incorporated with the aid of geometric models. This is the strongest observational evidence yet linking CE evolution to bipolar morphologies. A higher than average proportion of the sample shows low-ionisation knots, filaments or jets suggestive of a binary origin. These features are also common around emission-line nuclei which may be explained by speculative binary formation scenarios for H-deficient CSPN.Comment: Accepted for publication in A&

    The turbulent boundary layer on a porous plate: An experimental study of the heat transfer behavior with adverse pressure gradients

    Get PDF
    An experimental investigation of the heat transfer behavior of the near equilibrium transpired turbulent boundary layer with adverse pressure gradient has been carried out. Stanton numbers were measured by an energy balance on electrically heated plates that form the bottom wall of the wind tunnel. Two adverse pressure gradients were studied. Two types of transpiration boundary conditions were investigated. The concept of an equilibrium thermal boundary layer was introduced. It was found that Stanton number as a function of enthalpy thickness Reynolds number is essentially unaffected by adverse pressure gradient with no transpiration. Shear stress, heat flux, and turbulent Prandtl number profiles were computed from mean temperature and velocity profiles. It was concluded that the turbulent Prandtl number is greater than unity in near the wall and decreases continuously to approximately 0.5 at the free stream

    Testing modified gravity with globular cluster velocity dispersions

    Full text link
    Globular clusters (GCs) in the Milky Way have characteristic velocity dispersions that are consistent with the predictions of Newtonian gravity, and may be at odds with Modified Newtonian Dynamics (MOND). We discuss a modified gravity (MOG) theory that successfully predicts galaxy rotation curves, galaxy cluster masses and velocity dispersions, lensing, and cosmological observations, yet produces predictions consistent with Newtonian theory for smaller systems, such as GCs. MOG produces velocity dispersion predictions for GCs that are independent of the distance from the galactic center, which may not be the case for MOND. New observations of distant GCs may produce strong criteria that can be used to distinguish between competing gravitational theories.Comment: 4 pages, 2 figures; accepted for publication in Ap

    NGC 3603 - a Local Template for Massive Young Clusters

    Get PDF
    We present a study of the star cluster associated with the massive Galactic HII region NGC3603 based on near-IR broad-- and narrowband observations taken with ISAAC/VLT under excellent seeing conditions (<0.4''). We discuss color-color diagrams and address the impact of the high UV flux on the disk evolution of the low-mass stars.Comment: 3 pages, 3 figures. To appear in the Proceedings of IAU Symposium 207 "Extragalactic Star Clusters", eds. E. Grebel, D. Geisler and D. Minitt

    Field Equations and Conservation Laws in the Nonsymmetric Gravitational Theory

    Get PDF
    The field equations in the nonsymmetric gravitational theory are derived from a Lagrangian density using a first-order formalism. Using the general covariance of the Lagrangian density, conservation laws and tensor identities are derived. Among these are the generalized Bianchi identities and the law of energy-momentum conservation. The Lagrangian density is expanded to second-order, and treated as an ``Einstein plus fields'' theory. From this, it is deduced that the energy is positive in the radiation zone.Comment: 16 pages, RevTeX. Additional equations supplie

    Differential localization of glutamate receptor subunits at the drosophila neuromuscular junction

    Get PDF
    The subunit composition of postsynaptic neurotransmitter receptors is a key determinant of synaptic physiology. Two glutamate receptor subunits, Drosophila glutamate receptor IIA (DGluRIIA) and DGluRIIB, are expressed at the Drosophila neuromuscular junction and are redundant for viability, yet differ in their physiological properties. We now identify a third glutamate receptor subunit at the Drosophila neuromuscular junction, DGluRIII, which is essential for viability. DGluRIII is required for the synaptic localization of DGluRIIA and DGluRIIB and for synaptic transmission. Either DGluRIIA or DGluRIIB, but not both, is required for the synaptic localization of DGluRIII. DGluRIIA and DGluRIIB compete with each other for access to DGluRIII and subsequent localization to the synapse. These results are consistent with a model of a multimeric receptor in which DGluRIII is an essential component. At single postsynaptic cells that receive innervation from multiple motoneurons, DGluRIII is abundant at all synapses. However, DGluRIIA and DGluRIIB are differentially localized at the postsynaptic density opposite distinct motoneurons. Hence, innervating motoneurons may regulate the subunit composition of their receptor fields within a shared postsynaptic cell. The capacity of presynaptic inputs to shape the subunit composition of postsynaptic receptors could be an important mechanism for synapse-specific regulation of synaptic function and plasticity
    • …
    corecore