8 research outputs found

    Autoregulating jump performance to induce functional overreaching

    No full text
    The purpose of this study was to determine whether autoregulating jump performance using the minimal individual difference (MID) associated with countermovement jump (CMJ) height could be used to regulate and monitor a training phase that elicited functional overreaching and tapering in team sport athletes. The participants were familiarized with the jump and then the CMJ height reliability was quantified to determine the MID. Countermovement jump height was assessed in the pretesting session (T0), at the end of 4 weeks of intensified training (T1), and after 2 weeks of tapering (T2). Eighteen national level U17 male futsal players were randomly allocated into the regulated group (RG; n 9) and the control group (CG; n 9). The RG performed 6 weeks of training with the training load regulated by mean height of CMJ with MID, whereas the CG performed the preplanned training. The differences between groups and across time points were compared by a 2-way analysis of variance. In the RG, the MID loading was increased in weeks 3 and 4 (8.2 and 14.5%, respectively; p \u3c 0.001) compared with the preplanned loading of the CG during the overreaching phase. In the jump results, the RG significantly (p ≤ 0.05) reduced CMJ height during T1 (effect size [ES] -0.31; 95% confidence interval [CI]: -0.58 to -0.02); however, there were no significant changes in the CG jump height at T1 and T2. At T2, the RG significantly increased CMJ height above baseline (ES 0.30; 95% CI: 0.09 to 0.51). Researchers and practitioners could use this autoregulating method to regulate and monitor training load to achieve functional overreaching in youth futsal player

    Inflammatory biomarkers responses after acute whole body vibration in fibromyalgia

    No full text
    The aims of this study were 1) to characterize the intensity of the vibration stimulation in women diagnosed with fibromyalgia (FM) compared to a control group of healthy women (HW) matched by age and anthropometric parameters, and 2) to investigate the effect of a single session of whole body vibration (WBV) on inflammatory responses. Levels of adipokines, soluble tumor necrosis factor receptors (sTNFr1, sTNFr2), and brain-derived neurotrophic factor (BDNF) were determined by enzyme-linked immunosorbent assay. Oxygen consumption (VO2) was estimated by a portable gas analysis system, heart rate (HR) was measured using a HR monitor, and perceived exertion (RPE) was evaluated using the Borg scale of perceived exertion. Acutely mild WBV increased VO2 and HR similarly in both groups. There was an interaction (disease vs vibration) in RPE (P=0.0078), showing a higher RPE in FM compared to HW at rest, which further increased in FM after acute WBV, whereas it remained unchanged in HW. In addition, there was an interaction (disease vs vibration) in plasma levels of adiponectin (P=0.0001), sTNFR1 (P=0.000001), sTNFR2 (P=0.0052), leptin (P=0.0007), resistin (P=0.0166), and BDNF (P=0.0179). In conclusion, a single acute session of mild and short WBV can improve the inflammatory status in patients with FM, reaching values close to those of matched HW at their basal status. The neuroendocrine mechanism seems to be an exercise-induced modulation towards greater adaptation to stress response in these patients

    Inflammatory biomarkers responses after acute whole body vibration in fibromyalgia

    Get PDF
    The aims of this study were 1) to characterize the intensity of the vibration stimulation in women diagnosed with fibromyalgia (FM) compared to a control group of healthy women (HW) matched by age and anthropometric parameters, and 2) to investigate the effect of a single session of whole body vibration (WBV) on inflammatory responses. Levels of adipokines, soluble tumor necrosis factor receptors (sTNFr1, sTNFr2), and brain-derived neurotrophic factor (BDNF) were determined by enzyme-linked immunosorbent assay. Oxygen consumption (VO2) was estimated by a portable gas analysis system, heart rate (HR) was measured using a HR monitor, and perceived exertion (RPE) was evaluated using the Borg scale of perceived exertion. Acutely mild WBV increased VO2 and HR similarly in both groups. There was an interaction (disease vs vibration) in RPE (P=0.0078), showing a higher RPE in FM compared to HW at rest, which further increased in FM after acute WBV, whereas it remained unchanged in HW. In addition, there was an interaction (disease vs vibration) in plasma levels of adiponectin (P=0.0001), sTNFR1 (P=0.000001), sTNFR2 (P=0.0052), leptin (P=0.0007), resistin (P=0.0166), and BDNF (P=0.0179). In conclusion, a single acute session of mild and short WBV can improve the inflammatory status in patients with FM, reaching values close to those of matched HW at their basal status. The neuroendocrine mechanism seems to be an exercise-induced modulation towards greater adaptation to stress response in these patients
    corecore