19 research outputs found

    Deployment of AI-based RBF network for photovoltaics fault detection procedure

    Get PDF
    In this paper, a fault detection algorithm for photovoltaic systems based on artificial neural networks (ANN) is proposed. Although, a rich amount of research is available in the field of PV fault detection using ANN, this paper presents a novel methodology based on only two inputs for the training, validating and testing of the Radial Basis Function (RBF) network achieving unprecedented detection accuracy of 98.1%. The proposed methodology goes beyond data normalisation and implements a ‘mapping of inputs’ approach to the data set before exposing it to the network for training. The accuracy of the proposed network is further endorsed through testing of the network in partial shading and overcast conditions

    Kinetic analysis of enhanced biological phosphorus removal in a hybrid integrated fixed film activated sludge process

    No full text
    Hybrid integrated fixed film activated sludge is a promising process for the enhancement of nitrification, denitrification and phosphorus removal in conventional activated sludge systems that can be used for upgrading biological nutrient removal, particularly when they have space limitations or need modifications that will require large monetary expenses. In this research, successful implementation of hybrid integrated fixed film activated sludge process at temperate zone wastewater treatment facilities has been studied by the placement of fixed film media into aerobic, anaerobic and anoxic zones. The primary objective of this study was to investigate the incorporation of enhanced biological phosphorus removal into hybrid integrated fixed film activated sludge systems and study the interactions between the fixed biomass and the mixed liquor suspended solids with respect to substrate competition and nutrient removal efficiencies. A pilot-scale anaerobic-anoxic-oxic configuration system was used. The system was operated at different mean cell residence times and influent chemical oxygen demand/total phosphorus ratios and with split influent flows. The experimental results confirmed that enhanced biological phosphorus removal could be incorporated successfully into hybrid integrated fixed film activated sludge system, but the redistribution of biomass resulting from the integration of fixed film media and the competition of organic substrate between enhanced biological phosphorus removal and denitrification would affect performances. Also, kinetic analysis of the reactor with regarding to phosphorus removal has been studied with different kinetic models and consequently the modified Stover-Kincannon kinetic model has been chosen for modeling studies and experimental data analysis of the hybrid integrated fixed film activated sludge reactor

    Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR)

    No full text
    Biological nutrient removal (BNR) was investigated in a fixed bed sequencing batch reactor (FBSBR) in which instead of activated sludge polypropylene carriers were used. The FBSBR performance on carbon and nitrogen removal at different loading rates was significant. COD. TN, and phosphorus removal efficiencies were at range of 90-96%, 60-88%, and 76-90% respectively while these values at SBR reactor were 85-95%, 38-60%, and 20-79% respectively. These results show that the simultaneous nitrification-denitrification (SND) is significantly higher than conventional SBR reactor. The higher total phosphorus (TP) removal in FBSBR correlates with oxygen gradient in biofilm layer. The influence of fixed media on biomass production yield was assessed by monitoring the MLSS concentrations versus COD removal for both reactors and results revealed that the sludge production yield (Y-obs) is significantly less in FBSBR reactors compared with SBR reactor. The FBSBR was more efficient in SND and phosphorus removal. Moreover, it produced less excess sludge but higher in nutrient content and stabilization ratio (less VSS/TSS ratio). (C) 2010 Elsevier B.V. All rights reserved

    Salt Inhibition Effects on Simultaneous Heterotrophic/Autotrophic Denitrification of High Nitrate Wastewater

    No full text
    Denitrification of high-nitrate high-salinity wastewater is difficult due to plasmolysis and inactivation of denitrifiers at high salinity conditions. In this study, the effects of salinity and empty bed contact time (EBCT) on simultaneous heterotrophic and sulfur based autotrophic denitrification of synthetic wastewater were evaluated in an up flow packed bed reactor .The reactor was filled with granular elemental sulfur particles with diameters of 2.8-5.6 mm and porosity of 40%. The initial culture was prepared from sludge of Shahrak-e-ghods domestic wastewater treatment plant. The influent nitrate concentration and EBCT were 600 mg NO3-N/lit and 16 h respectively. First, the stoichiometric fraction of nitrate removed by heterotrophic denitrification (with methanol as organic carbon source) supplied enough alkalinity to compensate the autotrophic alkalinity consumption, was determined 60%. Then, salt concentration was gradually increased with NaCl from 0% in the feed. The Process kept high nitrate removal efficiency (>99%) even at 3.5 % NaCl. During these changes the alkalinity variations were insignificant which showed the microbial population ratio of acclimated autotrophic to heterotrophic denitrifiers had no any significant changes with NaCl concentrations up to 3.5% in the feed. At 4 and 5% NaCl, the efficiency drastically decreased to 78% and 48%, respectively. Similar behavior was also observed for methanol removal efficiency, effluent turbidity as an indirect determinant of biological mass and sulfate production. The effects of flow rates on denitrification of synthetic high nitrate high salinity wastewater with 3.5% NaCl under mixotrophic condition were also investigated by increasing the flow rate from 7.06 lit/day to 70.6 lit/day with corresponding EBCT 20 to 2 h. Denitrification efficiency was close to 100% at EBCT of 20 to 8 hr, but decreased to 79% and 39% when the EBCT was 4 and 2 h, respectively. The decrease in effluent sulfate concentration (as an indicator for autotrophic denitrification) and the increase in effluent alkalinity (as an indicator for heterotrophic denitrification) and pH at EBCT of 4 and 2 h were considerable correspondingly. These results imply that the population ratio of autotrophic to heterotrophic denitrifiers depends on EBCT

    D--Spring- 2010-Pagemaker-Sprin0060.mdi

    No full text
    ABSTRACT: Denitrification of high-nitrate high-salinity wastewater is difficult due to plasmolysis and inactivation of denitrifiers at high salinity conditions. In this study, the effects of salinity and empty bed contact time (EBCT) on simultaneous heterotrophic and sulfur based autotrophic denitrification of synthetic wastewater were evaluated in an up flow packed bed reactor .The reactor was filled with granular elemental sulfur particles with diameters of 2.8-5.6 mm and porosity of 40%. The initial culture was prepared from sludge of Shahrak-e-ghods domestic wastewater treatment plant. The influent nitrate concentration and EBCT were 600 mg NO3-N/lit and 16 h respectively. First, the stoichiometric fraction of nitrate removed by heterotrophic denitrification (with methanol as organic carbon source) supplied enough alkalinity to compensate the autotrophic alkalinity consumption, was determined 60%. Then, salt concentration was gradually increased with NaCl from 0% in the feed. The Process kept high nitrate removal efficiency (>99%) even at 3.5 % NaCl. During these changes the alkalinity variations were insignificant which showed the microbial population ratio of acclimated autotrophic to heterotrophic denitrifiers had no any significant changes with NaCl concentrations up to 3.5% in the feed. At 4 and 5% NaCl, the efficiency drastically decreased to 78% and 48%, respectively. Similar behavior was also observed for methanol removal efficiency, effluent turbidity as an indirect determinant of biological mass and sulfate production. The effects of flow rates on denitrification of synthetic high nitrate high salinity wastewater with 3.5 %NaCl under mixotrophic condition were also investigated by increasing the flow rate from 7.06 lit/day to 70.6 lit/day with corresponding EBCT 20 to 2 h. Denitrification efficiency was close to 100% at EBCT of 20 to 8 hr, but decreased to 79% and 39% when the EBCT was 4 and 2 h, respectively. The decrease in effluent sulfate concentration (as an indicator for autotrophic denitrification) and the increase in effluent alkalinity (as an indicator for heterotrophic denitrification) and pH at EBCT of 4 and 2 h were considerable correspondingly. These results imply that the population ratio of autotrophic to heterotrophic denitrifiers depends on EBCT
    corecore