89 research outputs found

    Gene Profiling of Mta1 Identifies Novel Gene Targets and Functions

    Get PDF
    BACKGROUND: Metastasis-associated protein 1 (MTA1), a master dual co-regulatory protein is found to be an integral part of NuRD (Nucleosome Remodeling and Histone Deacetylation) complex, which has indispensable transcriptional regulatory functions via histone deacetylation and chromatin remodeling. Emerging literature establishes MTA1 to be a valid DNA-damage responsive protein with a significant role in maintaining the optimum DNA-repair activity in mammalian cells exposed to genotoxic stress. This DNA-damage responsive function of MTA1 was reported to be a P53-dependent and independent function. Here, we investigate the influence of P53 on gene regulation function of Mta1 to identify novel gene targets and functions of Mta1. METHODS: Gene expression analysis was performed on five different mouse embryonic fibroblasts (MEFs) samples (i) the Mta1 wild type, (ii) Mta1 knock out (iii) Mta1 knock out in which Mta1 was reintroduced (iv) P53 knock out (v) P53 knock out in which Mta1 was over expressed using Affymetrix Mouse Exon 1.0 ST arrays. Further Hierarchical Clustering, Gene Ontology analysis with GO terms satisfying corrected p-value<0.1, and the Ingenuity Pathway Analysis were performed. Finally, RT-qPCR was carried out on selective candidate genes. SIGNIFICANCE/CONCLUSION: This study represents a complete genome wide screen for possible target genes of a coregulator, Mta1. The comparative gene profiling of Mta1 wild type, Mta1 knockout and Mta1 re-expression in the Mta1 knockout conditions define "bona fide" Mta1 target genes. Further extensive analyses of the data highlights the influence of P53 on Mta1 gene regulation. In the presence of P53 majority of the genes regulated by Mta1 are related to inflammatory and anti-microbial responses whereas in the absence of P53 the predominant target genes are involved in cancer signaling. Thus, the presented data emphasizes the known functions of Mta1 and serves as a rich resource which could help us identify novel Mta1 functions

    Localization and Androgen Regulation of Metastasis-Associated Protein 1 in Mouse Epididymis

    Get PDF
    BACKGROUND: Metastasis-associated protein 1 (MTA1), the founding member of the MTA family of genes, can modulate transcription by influencing the status of chromatin remodeling. Despite its strong correlation with the metastatic potential of cancer cells, MTA1 can also regulate crucial cellular pathways by modifying the acetylation status. We have previously reported the presence of MTA1/MTA1 in human and mouse testes, providing the evidence for its involvement in the regulation of testicular function during murine spermatogenesis. The objective of present study was to further assess the localization of MTA1 in mouse epididymis on both transcriptional and translational level, and then to explore whether MTA1 expression is regulated by androgens and postnatal epididymal development. METHODOLOGY/PRINCIPAL FINDINGS: Mice were deprived of circulating androgen by bilaterally castration and were then supplemented with exogenous testosterone propionate for one week. MTA1 was immunolocalized in the epithelium of the entire epididymis with the maximal expression in the nuclei of principal cells and of clear cells in proximal region. Its expression decreased gradually after castration, whereas testosterone treatment could restore the expression, indicating that the expression of this gene is dependent on androgen. During postnatal development, the protein expression in the epididymis began to appear from day 7 to day 14, increased dramatically from postnatal day 28, and peaked at adulthood onwards, coinciding with both the well differentiated status of epididymis and the mature levels of circulating androgens. This region- and cell-specific pattern was also conservative in normal human epididymis. CONCLUSIONS: Our data suggest that the expression of MTA1 protein could be regulated by androgen pathway and its expression level is closely associated with the postnatal development of the epididymis, giving rise to the possibility that this gene plays a potential role in sperm maturation and fertility

    Derivation of Human Differential Photoreceptor-like Cells from the Iris by Defined Combinations of CRX, RX and NEUROD

    Get PDF
    Examples of direct differentiation by defined transcription factors have been provided for beta-cells, cardiomyocytes and neurons. In the human visual system, there are four kinds of photoreceptors in the retina. Neural retina and iris-pigmented epithelium (IPE) share a common developmental origin, leading us to test whether human iris cells could differentiate to retinal neurons. We here define the transcription factor combinations that can determine human photoreceptor cell fate. Expression of rhodopsin, blue opsin and green/red opsin in induced photoreceptor cells were dependent on combinations of transcription factors: A combination of CRX and NEUROD induced rhodopsin and blue opsin, but did not induce green opsin; a combination of CRX and RX induced blue opsin and green/red opsin, but did not induce rhodopsin. Phototransduction-related genes as well as opsin genes were up-regulated in those cells. Functional analysis; i.e. patch clamp recordings, clearly revealed that generated photoreceptor cells, induced by CRX, RX and NEUROD, responded to light. The response was an inward current instead of the typical outward current. These data suggest that photosensitive photoreceptor cells can be generated by combinations of transcription factors. The combination of CRX and RX generate immature photoreceptors: and additional NEUROD promotes maturation. These findings contribute substantially to a major advance toward eventual cell-based therapy for retinal degenerative diseases

    Catechol-O-Methyltransferase Expression and 2-Methoxyestradiol Affect Microtubule Dynamics and Modify Steroid Receptor Signaling in Leiomyoma Cells

    Get PDF
    CONTEXT: Development of optimal medicinal treatments of uterine leiomyomas represents a significant challenge. 2-Methoxyestradiol (2ME) is an endogenous estrogen metabolite formed by sequential action of CYP450s and catechol-O-methyltransferase (COMT). Our previous study demonstrated that 2ME is a potent antiproliferative, proapoptotic, antiangiogenic, and collagen synthesis inhibitor in human leiomyomas cells (huLM). OBJECTIVES: Our objectives were to investigate whether COMT expression, by the virtue of 2ME formation, affects the growth of huLM, and to explore the cellular and molecular mechanisms whereby COMT expression or treatment with 2ME affect these cells. RESULTS: Our data demonstrated that E(2)-induced proliferation was less pronounced in cells over-expressing COMT or treated with 2ME (500 nM). This effect on cell proliferation was associated with microtubules stabilization and diminution of estrogen receptor alpha (ERalpha) and progesterone receptor (PR) transcriptional activities, due to shifts in their subcellular localization and sequestration in the cytoplasm. In addition, COMT over expression or treatment with 2ME reduced the expression of hypoxia-inducible factor -1alpha (HIF-1 alpha) and the basal level as well as TNF-alpha-induced aromatase (CYP19) expression. CONCLUSIONS: COMT over expression or treatment with 2ME stabilize microtubules, ameliorates E(2)-induced proliferation, inhibits ERalpha and PR signaling, and reduces HIF-1 alpha and CYP19 expression in human uterine leiomyoma cells. Thus, microtubules are a candidate target for treatment of uterine leiomyomas. In addition, the naturally occurring microtubule-targeting agent 2ME represents a potential new therapeutic for uterine leiomyomas

    Estrogen Induced Metastatic Modulators MMP-2 and MMP-9 Are Targets of 3,3′-Diindolylmethane in Thyroid Cancer

    Get PDF
    Thyroid cancer is the most common endocrine related cancer with increasing incidences during the past five years. Current treatments for thyroid cancer, such as surgery or radioactive iodine therapy, often require patients to be on lifelong thyroid hormone replacement therapy and given the significant recurrence rates of thyroid cancer, new preventive modalities are needed. The present study investigates the property of a natural dietary compound found in cruciferous vegetables, 3,3'-diindolylmethane (DIM), to target the metastatic phenotype of thyroid cancer cells through a functional estrogen receptor.Thyroid cancer cell lines were treated with estrogen and/or DIM and subjected to in vitro adhesion, migration and invasion assays to investigate the anti-metastatic and anti-estrogenic effects of DIM. We observed that DIM inhibits estrogen mediated increase in thyroid cell migration, adhesion and invasion, which is also supported by ER-α downregulation (siRNA) studies. Western blot and zymography analyses provided direct evidence for this DIM mediated inhibition of E(2) enhanced metastasis associated events by virtue of targeting essential proteolytic enzymes, namely MMP-2 and MMP-9.Our data reports for the first time that DIM displays anti-estrogenic like activity by inhibiting estradiol enhanced thyroid cancer cell proliferation and in vitro metastasis associated events, namely adhesion, migration and invasion. Most significantly, MMP-2 and MMP-9, which are known to promote and enhance metastasis, were determined to be targets of DIM. This anti-estrogen like property of DIM may lead to the development of a novel preventive and/or therapeutic dietary supplement for thyroid cancer patients by targeting progression of the disease

    Activation of Estrogen-Responsive Genes Does Not Require Their Nuclear Co-Localization

    Get PDF
    The spatial organization of the genome in the nucleus plays a role in the regulation of gene expression. Whether co-regulated genes are subject to coordinated repositioning to a shared nuclear space is a matter of considerable interest and debate. We investigated the nuclear organization of estrogen receptor alpha (ERα) target genes in human breast epithelial and cancer cell lines, before and after transcriptional activation induced with estradiol. We find that, contrary to another report, the ERα target genes TFF1 and GREB1 are distributed in the nucleoplasm with no particular relationship to each other. The nuclear separation between these genes, as well as between the ERα target genes PGR and CTSD, was unchanged by hormone addition and transcriptional activation with no evidence for co-localization between alleles. Similarly, while the volume occupied by the chromosomes increased, the relative nuclear position of the respective chromosome territories was unaffected by hormone addition. Our results demonstrate that estradiol-induced ERα target genes are not required to co-localize in the nucleus

    Ebolavirus Is Internalized into Host Cells via Macropinocytosis in a Viral Glycoprotein-Dependent Manner

    Get PDF
    Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs), both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin- or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX) 5, a marker of macropinocytosis-specific endosomes (macropinosomes). Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP) also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection
    corecore