5,417 research outputs found

    3-Body Dynamics in a (1+1) Dimensional Relativistic Self-Gravitating System

    Full text link
    The results of our study of the motion of a three particle, self-gravitating system in general relativistic lineal gravity is presented for an arbitrary ratio of the particle masses. We derive a canonical expression for the Hamiltonian of the system and discuss the numerical solution of the resulting equations of motion. This solution is compared to the corresponding non-relativistic and post-Newtonian approximation solutions so that the dynamics of the fully relativistic system can be interpretted as a correction to the one-dimensional Newtonian self-gravitating system. We find that the structure of the phase space of each of these systems yields a large variety of interesting dynamics that can be divided into three distinct regions: annulus, pretzel, and chaotic; the first two being regions of quasi-periodicity while the latter is a region of chaos. By changing the relative masses of the three particles we find that the relative sizes of these three phase space regions changes and that this deformation can be interpreted physically in terms of the gravitational interactions of the particles. Furthermore, we find that many of the interesting characteristics found in the case where all of the particles share the same mass also appears in our more general study. We find that there are additional regions of chaos in the unequal mass system which are not present in the equal mass case. We compare these results to those found in similar systems.Comment: latex, 26 pages, 17 figures, high quality figures available upon request; typos and grammar correcte

    1,5-Anhydroglucitol as a marker of maternal glycaemic control and predictor of neonatal birthweight in pregnancies complicated by type 1 diabetes mellitus

    Get PDF
    AIMS/HYPOTHESIS: Most pregnant women with type 1 diabetes mellitus achieve HbA(1c) targets; however, macrosomia remains prevalent and better pregnancy glycaemic markers are therefore needed. 1,5-Anhydroglucitol (1,5-AG) is a short-term marker of glycaemia, reflecting a period of 1 to 2 weeks. Its excretion rate depends on the renal glucose threshold and thus it is unclear whether it may be used in pregnant type 1 diabetes women. We evaluated 1,5-AG as a glycaemic marker and birthweight predictor in pregnant women with type 1 diabetes, and compared its performance with HbA(1c). METHODS: 1,5-AG and HbA(1c) were measured in 82 pregnant women with type 1 diabetes. In addition, 58 continuous glucose monitoring system (CGMS) records were available. Macrosomia was defined as birthweight >90th centile. The data were analysed with Pearson’s correlations, and linear and logistic regression models. Receiver operating characteristic (ROC) analysis was used to evaluate third trimester 1,5-AG as a predictor of macrosomia. RESULTS: Unlike HbA(1c), 1,5-AG strongly correlated with CGMS indices: the AUC above 7.8 mmol/l (r = −0.66; p < 0.001), average maximum glucose (r = −0.58; p < 0.001) and mean glucose (r = −0.54; p < 0.001). In the third trimester, 1,5-AG was the strongest predictor of macrosomia, with ROC AUC 0.81 (95% CI 0.70, 0.89). In contrast, HbA(1c) in the third trimester had a ROC AUC of 0.69 (95% CI 0.58, 0.81). The best discrimination was achieved when both markers were used jointly, yielding a ROC AUC of 0.84 (95% CI 0.76, 0.93). CONCLUSIONS/INTERPRETATION: In pregnant women with type 1 diabetes, 1,5-AG is a better glycaemic marker than HbA(1c), as assessed by CGMS. A decreased third trimester 1,5-AG level, either singly or with HbA(1c), is a strong predictor of macrosomia

    Chaos in an Exact Relativistic 3-body Self-Gravitating System

    Get PDF
    We consider the problem of three body motion for a relativistic one-dimensional self-gravitating system. After describing the canonical decomposition of the action, we find an exact expression for the 3-body Hamiltonian, implicitly determined in terms of the four coordinate and momentum degrees of freedom in the system. Non-relativistically these degrees of freedom can be rewritten in terms of a single particle moving in a two-dimensional hexagonal well. We find the exact relativistic generalization of this potential, along with its post-Newtonian approximation. We then specialize to the equal mass case and numerically solve the equations of motion that follow from the Hamiltonian. Working in hexagonal-well coordinates, we obtaining orbits in both the hexagonal and 3-body representations of the system, and plot the Poincare sections as a function of the relativistic energy parameter η\eta . We find two broad categories of periodic and quasi-periodic motions that we refer to as the annulus and pretzel patterns, as well as a set of chaotic motions that appear in the region of phase-space between these two types. Despite the high degree of non-linearity in the relativistic system, we find that the the global structure of its phase space remains qualitatively the same as its non-relativisitic counterpart for all values of η\eta that we could study. However the relativistic system has a weaker symmetry and so its Poincare section develops an asymmetric distortion that increases with increasing η\eta . For the post-Newtonian system we find that it experiences a KAM breakdown for η0.26\eta \simeq 0.26: above which the near integrable regions degenerate into chaos.Comment: latex, 65 pages, 36 figures, high-resolution figures available upon reques

    Scanning Electron Microscopy of High-Pressure-Frozen Sea Urchin Embryos

    Get PDF
    High-pressure-freezing permits direct cryo-fixation of sea urchin embryos having a defined developmental state without the formation of large ice crystals. We have investigated preparation protocols for observing high-pressure-frozen and freeze-fractured samples in the scanning electron microscope. High-pressure-freezing was superior to other freezing protocols, because the whole bulk sample was reasonably well frozen and the overall three-dimensional shape of the embryos was well preserved. The samples were either dehydrated by freeze-substitution and critical-point-drying, or imaged in the partially hydrated state, using a cold stage in the SEM. During freeze-substitution the samples were stabilized by fixatives. The disadvantage of this method was that shrinking and extraction effects, caused by the removal of the water, could not be avoided. These disadvantages were avoided when. the sample was imaged in the frozen-hydrated state using a cold-stage in the SEM. This would be the method of choice for morphometric studies. Frozen-hydrated samples, however, were very beam sensitive and many structures remained covered by the ice and were not visible. Frozen-hydrated samples were partially freeze-dried to make visible additional structures that had been covered by ice. However, this method also caused drying artifacts when too much water was removed

    The Two Dimensional Kondo Model with Rashba Spin-Orbit Coupling

    Full text link
    We investigate the effect that Rashba spin-orbit coupling has on the low energy behaviour of a two dimensional magnetic impurity system. It is shown that the Kondo effect, the screening of the magnetic impurity at temperatures T < T_K, is robust against such spin-orbit coupling, despite the fact that the spin of the conduction electrons is no longer a conserved quantity. A proposal is made for how the spin-orbit coupling may change the value of the Kondo temperature T_K in such systems and the prospects of measuring this change are discussed. We conclude that many of the assumptions made in our analysis invalidate our results as applied to recent experiments in semi-conductor quantum dots but may apply to measurements made with magnetic atoms placed on metallic surfaces.Comment: 22 pages, 1 figure; reference update

    Quantum Gravity and Inflation

    Get PDF
    Using the Ashtekar-Sen variables of loop quantum gravity, a new class of exact solutions to the equations of quantum cosmology is found for gravity coupled to a scalar field, that corresponds to inflating universes. The scalar field, which has an arbitrary potential, is treated as a time variable, reducing the hamiltonian constraint to a time-dependent Schroedinger equation. When reduced to the homogeneous and isotropic case, this is solved exactly by a set of solutions that extend the Kodama state, taking into account the time dependence of the vacuum energy. Each quantum state corresponds to a classical solution of the Hamiltonian-Jacobi equation. The study of the latter shows evidence for an attractor, suggesting a universality in the phenomena of inflation. Finally, wavepackets can be constructed by superposing solutions with different ratios of kinetic to potential scalar field energy, resolving, at least in this case, the issue of normalizability of the Kodama state.Comment: 18 Pages, 2 Figures; major corrections to equations but prior results still hold, updated reference

    Molecular self-organization: Predicting the pattern diversity and lowest energy state of competing ordering motifs

    Get PDF
    Self-organized monolayers of highly flexible \Frechet dendrons were deposited on graphite surfaces by solution casting. Scanning tunneling microscopy (STM) reveals an unprecedented variety of patterns with up to seven stable hierarchical ordering motifs serving as a versatile model system. The essential molecular properties determined by molecular mechanics simulations are condensed to a coarse grained interaction site model of various chain configurations. In a Monte Carlo approach with random starting configurations the experimental pattern diversity can be reproduced in all facets of the local and global ordering. Based on an energy analysis of the Monte Carlo and molecular mechanics modeling the thermodynamically most stable pattern is predicted coinciding with the pattern, which dominates in the STM images after several hours or upon moderate heating.Comment: 6 pages, 7 figure

    Improved performance of the LHCb Outer Tracker in LHC Run 2

    Full text link
    The LHCb Outer Tracker is a gaseous detector covering an area of 5×6m25\times 6 m^2 with 12 double layers of straw tubes. The performance of the detector is presented based on data of the LHC Run 2 running period from 2015 and 2016. Occupancies and operational experience for data collected in ppp p, pPb and PbPb collisions are described. An updated study of the ageing effects is presented showing no signs of gain deterioration or other radiation damage effects. In addition several improvements with respect to LHC Run 1 data taking are introduced. A novel real-time calibration of the time-alignment of the detector and the alignment of the single monolayers composing detector modules are presented, improving the drift-time and position resolution of the detector by 20\%. Finally, a potential use of the improved resolution for the timing of charged tracks is described, showing the possibility to identify low-momentum hadrons with their time-of-flight.Comment: 29 pages, 20 figures, minor changes to match the published versio
    corecore