294 research outputs found

    On the magnetic structure of the solar transition region

    Full text link
    We examine the hypothesis that ``cool loops'' dominate emission from solar transition region plasma below temperatures of 2×1052\times10^5K. We compare published VAULT images of H Lα\alpha, a lower transition region line, with near-contemporaneous magnetograms from Kitt Peak, obtained during the second flight (VAULT-2) on 14 June 2002. The measured surface fields and potential extrapolations suggest that there are too few short loops, and that Lα\alpha emission is associated with the base regions of longer, coronal loops. VAULT-2 data of network boundaries have an asymmetry on scales larger than supergranules, also indicating an association with long loops. We complement the Kitt Peak data with very sensitive vector polarimetric data from the Spectro-Polarimeter on board Hinode, to determine the influence of very small magnetic concentrations on our analysis. From these data two classes of behavior are found: within the cores of strong magnetic flux concentrations (>5×1018> 5\times10^{18} Mx) associated with active network and plage, small-scale mixed fields are absent and any short loops can connect just the peripheries of the flux to cell interiors. Core fields return to the surface via longer, most likely coronal, loops. In weaker concentrations, short loops can connect between concentrations and produce mixed fields within network boundaries as suggested by Dowdy and colleagues. The VAULT-2 data which we examined are associated with strong concentrations. We conclude that the cool loop model applies only to a small fraction of the VAULT-2 emission, but we cannot discount a significant role for cool loops in quieter regions. We suggest a physical picture for how network Lα\alpha emission may occur through the cross-field diffusion of neutral atoms from chromospheric into coronal plasma.Comment: Accepted by ApJ, 9 May 200

    Granular Scale Magnetic Flux Cancellations in the Photosphere

    Full text link
    We investigate the evolution of 5 granular-scale magnetic flux cancellations just outside the moat region of a sunspot by using accurate spectropolarimetric measurements and G-band images with the Solar Optical Telescope aboard Hinode. The opposite polarity magnetic elements approach a junction of the intergranular lanes and then they collide with each other there. The intergranular junction has strong red shifts, darker intensities than the regular intergranular lanes, and surface converging flows. This clearly confirms that the converging and downward convective motions are essential for the approaching process of the opposite-polarity magnetic elements. However, motion of the approaching magnetic elements does not always match with their surrounding surface flow patterns in our observations. This suggests that, in addition to the surface flows, subsurface downward convective motions and subsurface magnetic connectivities are important for understanding the approach and collision of the opposite polarity elements observed in the photosphere. We find that the horizontal magnetic field appears between the canceling opposite polarity elements in only one event. The horizontal fields are observed along the intergranular lanes with Doppler red shifts. This cancellation is most probably a result of the submergence (retraction) of low-lying photospheric magnetic flux. In the other 4 events, the horizontal field is not observed between the opposite polarity elements at any time when they approach and cancel each other. These approaching magnetic elements are more concentrated rather than gradually diffused, and they have nearly vertical fields even while they are in contact each other. We thus infer that the actual flux cancellation is highly time dependent events at scales less than a pixel of Hinode SOT (about 200 km) near the solar surface.Comment: Accepted for publication in the Astrophysical Journa

    Magnetic Flux Loss and Flux Transport in a Decaying Active Region

    Full text link
    We estimate the temporal change of magnetic flux perpendicular to the solar surface in a decaying active region by using a time series of the spatial distribution of vector magnetic fields in the photosphere. The vector magnetic fields are derived from full spectropolarimetric measurements with the Solar Optical Telescope aboard Hinode. We compare a magnetic flux loss rate to a flux transport rate in a decaying sunspot and its surrounding moat region. The amount of magnetic flux that decreases in the sunspot and moat region is very similar to magnetic flux transported to the outer boundary of the moat region. The flux loss rates [(dF/dt)loss(dF/dt)_{loss}] of magnetic elements with positive and negative polarities are balanced each other around the outer boundary of the moat region. These results suggest that most of the magnetic flux in the sunspot is transported to the outer boundary of the moat region as moving magnetic features, and then removed from the photosphere by flux cancellation around the outer boundary of the moat region.Comment: 16 pages, 7 figures, Accepted for publication in Ap

    The effect of the relative orientation between the coronal field and new emerging flux: I Global Properties

    Full text link
    The emergence of magnetic flux from the convection zone into the corona is an important process for the dynamical evolution of the coronal magnetic field. In this paper we extend our previous numerical investigations, by looking at the process of flux interaction as an initially twisted flux tube emerges into a plane parallel, coronal magnetic field. Significant differences are found in the dynamical appearance and evolution of the emergence process depending on the relative orientation between the rising flux system and any preexisting coronal field. When the flux systems are nearly anti-parallel, the experiments show substantial reconnection and demonstrate clear signatures of a high temperature plasma located in the high velocity outflow regions extending from the reconnection region. However, the cases that have a more parallel orientation of the flux systems show very limited reconnection and none of the associated features. Despite the very different amount of reconnection between the two flux systems, it is found that the emerging flux that is still connected to the original tube, reaches the same height as a function of time. As a compensation for the loss of tube flux, a clear difference is found in the extent of the emerging loop in the direction perpendicular to the main axis of the initial flux tube. Increasing amounts of magnetic reconnection decrease the volume, which confines the remaining tube flux.Comment: 21 pages, 16 figures Accepted for Ap

    The quiet Sun's magnetic flux estimated from CaIIH bright inter-granular G-band structures

    Full text link
    We determine the number density and area contribution of small-scale inter-granular calcium-II bright G-band structures in images of the quiet Sun as tracers of kilo-Gauss magnetic flux-concentrations. In a 149" x 117" G-band image of the disk center at the activity minimum, 7593 small inter-granular structures ['IGS']were segmented with the `multiple-level tracking' pattern recognition algorithm ['MLT_4']. The scatter-plot of the continuum versus the G-band brightness shows the known magnetic and non-magnetic branches. These branches are largely disentangled by applying an intrinsic Ca-II excess criterion. The thus obtained 2995 structures contain 1152 G-band bright points ['BP'] and 1843 G-band faint points ['FP']. They show a tendency of increasing size with decreasing G-band excess, as expected from the `hot wall' picture. Their Ca-H and G-band brightness are slightly related, resembling the known relation of Ca-II and magnetic field strength. The magnetic flux density of each individual BP and FP is estimated from their G-band brightness according to MHD-model calculations. The entity of BP and FP covers the total field-of-view ['FOV'] with a number density of 0.32/Mm^2 and a total area contribution of 2.0%. Their individual calibrations yield a mean flux density of 20 Mx/cm^2 in the entire FOV and 13 Mx/cm^2 for inter-network regions

    Dynamics of the Solar Magnetic Network. II. Heating the Magnetized Chromosphere

    Full text link
    We consider recent observations of the chromospheric network, and argue that the bright network grains observed in the Ca II H & K lines are heated by an as yet unidentified quasi-steady process. We propose that the heating is caused by dissipation of short-period magnetoacoustic waves in magnetic flux tubes (periods less than 100 s). Magnetohydrodynamic (MHD) models of such waves are presented. We consider wave generation in the network due to two separate processes: (a) by transverse motions at the base of the flux tube; and (b) by the absorption of acoustic waves generated in the ambient medium. We find that the former mechanism leads to an efficient heating of the chromosphere by slow magnetoacoustic waves propagating along magnetic field lines. This heating is produced by shock waves with a horizontal size of a few hundred kilometers. In contrast, acoustic waves excited in the ambient medium are converted into transverse fast modes that travel rapidly through the flux tube and do not form shocks, unless the acoustic sources are located within 100 km from the tube axis. We conclude that the magnetic network may be heated by magnetoacoustic waves that are generated in or near the flux tubes.Comment: 30 pages, 8 figures, Accepted in Astrophysical Journa

    Non-linear numerical simulations of magneto-acoustic wave propagation in small-scale flux tubes

    Full text link
    We present results of non-linear, 2D, numerical simulations of magneto-acoustic wave propagation in the photosphere and chromosphere of small-scale flux tubes with internal structure. Waves with realistic periods of three to five minutes are studied, after applying horizontal and vertical oscillatory perturbations to the equilibrium model. Spurious reflections of shock waves from the upper boundary are minimized thanks to a special boundary condition. This has allowed us to increase the duration of the simulations and to make it long enough to perform a statistical analysis of oscillations. The simulations show that deep horizontal motions of the flux tube generate a slow (magnetic) mode and a surface mode. These modes are efficiently transformed into a slow (acoustic) mode in the vA < cS atmosphere. The slow (acoustic) mode propagates vertically along the field lines, forms shocks and remains always within the flux tube. It might deposit effectively the energy of the driver into the chromosphere. When the driver oscillates with a high frequency, above the cut-off, non-linear wave propagation occurs with the same dominant driver period at all heights. At low frequencies, below the cut-off, the dominant period of oscillations changes with height from that of the driver in the photosphere to its first harmonic (half period) in the chromosphere. Depending on the period and on the type of the driver, different shock patterns are observed.Comment: 22 pages 6 color figures, submitted to Solar Physics, proceeding of SOHO 19/ GONG 2007 meeting, Melbourne, Australi

    Observations of solar scattering polarization at high spatial resolution

    Full text link
    The weak, turbulent magnetic fields that supposedly permeate most of the solar photosphere are difficult to observe, because the Zeeman effect is virtually blind to them. The Hanle effect, acting on the scattering polarization in suitable lines, can in principle be used as a diagnostic for these fields. However, the prediction that the majority of the weak, turbulent field resides in intergranular lanes also poses significant challenges to scattering polarization observations because high spatial resolution is usually difficult to attain. We aim to measure the difference in scattering polarization between granules and intergranules. We present the respective center-to-limb variations, which may serve as input for future models. We perform full Stokes filter polarimetry at different solar limb positions with the CN band filter of the Hinode-SOT Broadband Filter Imager, which represents the first scattering polarization observations with sufficient spatial resolution to discern the granulation. Hinode-SOT offers unprecedented spatial resolution in combination with high polarimetric sensitivity. The CN band is known to have a significant scattering polarization signal, and is sensitive to the Hanle effect. We extend the instrumental polarization calibration routine to the observing wavelength, and correct for various systematic effects. The scattering polarization for granules (i.e., regions brighter than the median intensity of non-magnetic pixels) is significantly larger than for intergranules. We derive that the intergranules (i.e., the remaining non-magnetic pixels) exhibit (9.8 \pm 3.0)% less scattering polarization for 0.2<u<0.3, although systematic effects cannot be completely excluded. These observations constrain MHD models in combination with (polarized) radiative transfer in terms of CN band line formation, radiation anisotropy, and magnetic fields.Comment: Accepted for publication in A&
    corecore