2,008 research outputs found

    'Follow me': a web-based, location-sharing architecture for large, indoor environments

    Get PDF
    We leverage the ubiquity of bluetooth-enabled devices and propose a decentralized, web-based architecture that allows users to share their location by following each other in the style of Twitter. We demonstrate a prototype that operates in a large building which generates a dataset of detected bluetooth devices at a rate of ~30 new devices per day, including the respective location where they were last detected. Users then query the dataset using their unique bluetooth ID and share their current location with their followers by means of unique URIs that they control. Our separation between producers (the building) and consumers (the users) of bluetooth device location data allows us to create socially-aware applications that respect user's privacy while limiting the software necessary to run on mobile devices to just a web browser

    Construction of Non-Perturbative, Unitary Particle-Antiparticle Amplitudes for Finite Particle Number Scattering Formalisms

    Full text link
    Starting from a unitary, Lorentz invariant two-particle scattering amplitude , we show how to use an identification and replacement process to construct a unique, unitary particle-antiparticle amplitude. This process differs from conventional on-shell Mandelstam s,t,u crossing in that the input and constructed amplitudes can be off-diagonal and off-energy shell. Further, amplitudes are constructed using the invariant parameters which are appropriate to use as driving terms in the multi-particle, multichannel non-perturbative, cluster decomposable, relativistic scattering equations of the Faddeev-type integral equations recently presented by Alfred, Kwizera, Lindesay and Noyes. It is therefore anticipated that when so employed, the resulting multi-channel solutions will also be unitary. The process preserves the usual particle-antiparticle symmetries. To illustrate this process, we construct a J=0 scattering length model chosen for simplicity. We also exhibit a class of physical models which contain a finite quantum mass parameter and are Lorentz invariant. These are constructed to reduce in the appropriate limits, and with the proper choice of value and sign of the interaction parameter, to the asymptotic solution of the non-relativistic Coulomb problem, including the forward scattering singularity, the essential singularity in the phase, and the Bohr bound-state spectrum

    Calculation of the effect of random superfluid density on the temperature dependence of the penetration depth

    Full text link
    Microscopic variations in composition or structure can lead to nanoscale inhomogeneity in superconducting properties such as the magnetic penetration depth, but measurements of these properties are usually made on longer length scales. We solve a generalized London equation with a non-uniform penetration depth, lambda(r), obtaining an approximate solution for the disorder-averaged Meissner effect. We find that the effective penetration depth is different from the average penetration depth and is sensitive to the details of the disorder. These results indicate the need for caution when interpreting measurements of the penetration depth and its temperature dependence in systems which may be inhomogeneous

    Control of inflorescence architecture in tomato by BTB/POZ transcriptional regulators

    Get PDF
    Plant productivity depends on inflorescences, flower-bearing shoots that originate from the stem cell populations of shoot meristems. Inflorescence architecture determines flower production, which can vary dramatically both between and within species. In tomato plants, formation of multiflowered inflorescences depends on a precisely timed process of meristem maturation mediated by the transcription factor gene TERMINATING FLOWER (TMF), but the underlying mechanism is unknown. We show that TMF protein acts together with homologs of the Arabidopsis BLADE-ON-PETIOLE (BOP) transcriptional cofactors, defined by the conserved BTB (Broad complex, Tramtrack, and Bric-a-brac)/POZ (POX virus and zinc finger) domain. TMF and three tomato BOPs (SlBOPs) interact with themselves and each other, and TMF recruits SlBOPs to the nucleus, suggesting formation of a transcriptional complex. Like TMF, SlBOP gene expression is highest during vegetative and transitional stages of meristem maturation, and CRISPR/Cas9 elimination of SlBOP function causes pleiotropic defects, most notably simplification of inflorescences into single flowers, resembling tmf mutants. Flowering defects are enhanced in higher-order slbop tmf mutants, suggesting that SlBOPs function with additional factors. In support of this, SlBOPs interact with TMF homologs, mutations in which cause phenotypes like slbop mutants. Our findings reveal a new flowering module defined by SlBOP-TMF family interactions that ensures a progressive meristem maturation to promote inflorescence complexity

    976-14 Immediate Heart Rate Response to Orthostatic Stress During β-blocker Therapy for Vasodepressor Syncope

    Get PDF
    Although β-blockers are preferred agents for therapy of vasodepressor syncope (VDS), they are not uniformly effective and their mechanism of action is incompletely understood. Since we have previously shown a differential therapeutic response to β-blocker therapy between pts with isoproterenol-independent [iso(-)] and isoproterenol-dependent [iso(+)] VDS during tilt table testing we sought to determine whether this was due to a differential heart rate (HR) response to orthostasis during β-blockade. We therefore examined immediate HR and blood pressure responses to upright tilt before and after initiation of therapy with atenolol (12.5–50mg daily) in 62 pts with VDS and positive tilt tests. The protocol comprised upright tilt (60°) for up to 60min followed by repeat tilt for 15min during isoproterenol (iso) infusion. Supine HR, mean arterial pressure (MAP) and pulse pressure (PP) were determined as the mean of 3 consecutive 1-min samples during supine rest; orthostatic HR, MAP, and PP were the mean of the samples recorded in the first 3min after upright tilt (before infusion of iso). Response to atenolol required completion of tilt with and without infusion of iso. There were 15 iso(-) pts and 47 iso(+) pts. The groups did not differ significantly in blood pressure response (MAP, PP) to orthostasis. Supine HR fell and the ΔHR in response to orthostasis was blunted during therapy in both groups:Baseline (Mean ± SD)Rx (Mean ± SD)Iso(+)Iso(-)pIso(+)Iso(-)pSupine HR69±1368±9NS57±958±8NSOrthostatic ΔHR8±712±9NS3±53±4NS11 iso(-) pts (73%) had a therapeutic response to β-blockade compared with 46 iso(+) pts (98%, p=0.01); the orthostatic ΔHR in the iso(-) pts who failed β-blocker therapy was no different from the response in the patients with a therapeutic response.ConclusionsThe HR response to orthostasis is comparably blunted after β-blockade in pts with iso(-) and iso(+) VDS, indicating that failure to respond is not due to inadequate β-blockade and suggests that in some pts iso-independent VDS may be independent of a cardiac β1 receptor mediated mechanism

    Tomato yield heterosis is triggered by a dosage sensitivity of the florigen pathway that fine-tunes shoot architecture

    Get PDF
    The superiority of hybrids has long been exploited in agriculture, and although many models explaining "heterosis" have been put forth, direct empirical support is limited. Particularly elusive have been cases of heterozygosity for single gene mutations causing heterosis under a genetic model known as overdominance. In tomato (Solanum lycopersicum), plants carrying mutations in SINGLE FLOWER TRUSS (SFT) encoding the flowering hormone florigen are severely delayed in flowering, become extremely large, and produce few flowers and fruits, but when heterozygous, yields are dramatically increased. Curiously, this overdominance is evident only in the background of "determinate" plants, in which the continuous production of side shoots and inflorescences gradually halts due to a defect in the flowering repressor SELF PRUNING (SP). How sp facilitates sft overdominance is unclear, but is thought to relate to the opposing functions these genes have on flowering time and shoot architecture. We show that sft mutant heterozygosity (sft/+) causes weak semi-dominant delays in flowering of both primary and side shoots. Using transcriptome sequencing of shoot meristems, we demonstrate that this delay begins before seedling meristems become reproductive, followed by delays in subsequent side shoot meristems that, in turn, postpone the arrest of shoot and inflorescence production. Reducing SFT levels in sp plants by artificial microRNAs recapitulates the dose-dependent modification of shoot and inflorescence production of sft/+ heterozygotes, confirming that fine-tuning levels of functional SFT transcripts provides a foundation for higher yields. Finally, we show that although flowering delays by florigen mutant heterozygosity are conserved in Arabidopsis, increased yield is not, likely because cyclical flowering is absent. We suggest sft heterozygosity triggers a yield improvement by optimizing plant architecture via its dosage response in the florigen pathway. Exploiting dosage sensitivity of florigen and its family members therefore provides a path to enhance productivity in other crops, but species-specific tuning will be required

    Differential Regulation of Strand-Specific Transcripts from Arabidopsis Centromeric Satellite Repeats

    Get PDF
    Centromeres interact with the spindle apparatus to enable chromosome disjunction and typically contain thousands of tandemly arranged satellite repeats interspersed with retrotransposons. While their role has been obscure, centromeric repeats are epigenetically modified and centromere specification has a strong epigenetic component. In the yeast Schizosaccharomyces pombe, long heterochromatic repeats are transcribed and contribute to centromere function via RNA interference (RNAi). In the higher plant Arabidopsis thaliana, as in mammalian cells, centromeric satellite repeats are short (180 base pairs), are found in thousands of tandem copies, and are methylated. We have found transcripts from both strands of canonical, bulk Arabidopsis repeats. At least one subfamily of 180–base pair repeats is transcribed from only one strand and regulated by RNAi and histone modification. A second subfamily of repeats is also silenced, but silencing is lost on both strands in mutants in the CpG DNA methyltransferase MET1, the histone deacetylase HDA6/SIL1, or the chromatin remodeling ATPase DDM1. This regulation is due to transcription from Athila2 retrotransposons, which integrate in both orientations relative to the repeats, and differs between strains of Arabidopsis. Silencing lost in met1 or hda6 is reestablished in backcrosses to wild-type, but silencing lost in RNAi mutants and ddm1 is not. Twenty-four–nucleotide small interfering RNAs from centromeric repeats are retained in met1 and hda6, but not in ddm1, and may have a role in this epigenetic inheritance. Histone H3 lysine-9 dimethylation is associated with both classes of repeats. We propose roles for transcribed repeats in the epigenetic inheritance and evolution of centromeres
    • …
    corecore