4,249 research outputs found
Recommended from our members
Urban warming in villages
Long term meteorological records (> 100 years) from stations associated with villages are generally classified as rural and assumed to have no urban influence. Using networks installed in two European villages, the local and microclimatic variations around two of these rural-village sites are examined. An annual average temperature difference () of 0.6 and 0.4 K was observed between the built-up village area and the current meteorological station in Geisenheim (Germany) and Haparanda (Sweden), respectively. Considerably larger values were recorded for the minimum temperatures and during summer. The spatial variations in temperature within the villages are of the same order as recorded over the past 100+ years in these villages (0.06 to 0.17 K/10 years). This suggests that the potential biases in the long records of rural-villages also warrant careful consideration like those of the more commonly studied large urban areas effects
Microscopic Origin of Quantum Chaos in Rotational Damping
The rotational spectrum of Yb is calculated diagonalizing different
effective interactions within the basis of unperturbed rotational bands
provided by the cranked shell model. A transition between order and chaos
taking place in the energy region between 1 and 2 MeV above the yrast line is
observed, associated with the onset of rotational damping. It can be related to
the higher multipole components of the force acting among the unperturbed
rotational bands.Comment: 7 pages, plain TEX, YITP/K-99
Use of near infrared reflectance spectroscopy to predict nitrogen uptake by winter wheat within fields with high variability in organic matter
In this study, the ability to predict N-uptake in winter wheat crops using NIR-spectroscopy on soil samples was evaluated. Soil samples were taken in unfertilized plots in one winter wheat field during three years (1997-1999) and in another winter wheat field nearby in one year (2000). Soil samples were analyzed for organic C content and their NIR-spectra. N-uptake was measured as total N-content in aboveground plant materials at harvest. Models calibrated to predict N-uptake were internally cross validated and validated across years and across fields. Cross-validated calibrations predicted N-uptake with an average error of 12.1 to 15.4 kg N ha-1. The standard deviation divided by this error (RPD) ranged between 1.9 and 2.5. In comparison, the corresponding calibrations based on organic C alone had an error from 11.7 to 28.2 kg N ha-1 and RPDs from 1.3 to 2.5. In three of four annual calibrations within a field, the NIR-based calibrations worked better than the organic C based calibrations. The prediction of N-uptake across years, but within a field, worked slightly better with an organic C based calibration than with a NIR based one, RPD = 1.9 and 1.7 respectively. Across fields, the corresponding difference was large in favour of the NIR-calibration, RPD = 2.5 for the NIR-calibration and 1.5 for the organic C calibration. It was concluded that NIR-spectroscopy integrates information about organic C with other relevant soil components and therefore has a good potential to predict complex functions of soils such as N-mineralization. A relatively good agreement of spectral relationships to parameters related to the N-mineralization of datasets across the world suggests that more general models can be calibrated
Structural and magnetic properties of MSr2Y1.5Ce0.5Cu2Oz (M-1222) compounds with M = Fe and Co
MSr2Y1.5Ce0.5Cu2Oz (M-1222) compounds, with M = Fe and Co, have been
synthesized through a solid-state reaction route. Both compounds crystallize in
a tetragonal structure (space group I4/mmm). A Rietveld structural refinement
of room-temperature neutron diffraction data for Fe-1222 reveals that nearly
half the Fe remains at the M site, while the other half goes to the Cu site in
the CuO2 planes. Existence of Fe at two different lattice sites, is also
confirmed by 57Fe Mossbauer spectroscopy from which it is inferred that nearly
50% of the total Fe occupies the Cu site in the CuO2 planes as Fe3+, whereas
the other 50 % is located at the M site with nearly 40 % as Fe4+ and around 10%
as Fe3+. For the M = Co compound, nearly 84 % of Co remains at its designated M
site, while the rest occupies the Cu site in the CuO2 planes. The oxygen
content, z, based on oxygen occupancies refined from the neutron diffraction
data, comes close to 9.0 for both the samples The ZFC and FC magnetization
curves as a function of temperature show a complex behavior for both Fe-1222
and Co-1222 compounds.Comment: MMM Inter mag Proceedings, accepted in J. Appl. Phy
Polyethyleneimine for copper absorption: kinetics, selectivity and efficiency in artificial seawater
Published on 29 May 2014.Polyethyleneimine (PEI) is known to bind copper ions effectively and selectively. However, this is the first report on PEI-based materials for copper scavenging from ultra-low concentrations in seawater matrixes. The findings are relevant for water purification and sensing applications as well as extraction of copper from oceans.Johan B. Lindén, Mikael Larsson, Bryan R. Coad, William M. Skinner and Magnus Nydé
Structural and Magnetic Properties of MrSr₂Y₁.₅Ce₀.₅Cu₂Oz (M-1222) Compounds with M = Fe and Co
The MSr2Y1.5Ce0.5Cu2Oz (M-1222) compounds, with M = Fe and Co, have been synthesized through a solid-state reaction route. Both compounds crystallize in a tetragonal structure (space group 14/mmm). A Rietveld structural refinement of the room-temperature neutron diffraction data for Fe-1222 reveals that nearly half the Fe remains at the M site, while the other half goes to the Cu site in the CuO2 planes. Existence of Fe at two different lattice sites is also confirmed by 57Fe Mössbauer spectroscopy from which it is inferred that ~50% of the total Fe occupies the Cu site in the CuO2 planes as Fe3+, whereas the other ~50% is located at the M site with ~40% as Fe4+ and ~10% as Fe3+. For the M[Double Bond]Co compound, nearly 84% of Co remains at its designated M site, while the rest occupies the Cu site in the CuO2 planes
Electronic and Magnetic Structures of Sr2FeMoO6
We have investigated the electronic and magnetic structures of Sr2FeMoO6
employing site-specific direct probes, namely x-ray absorption spectroscopy
with linearly and circularly polarized photons. In contrast to some previous
suggestions, the results clearly establish that Fe is in the formal trivalent
state in this compound. With the help of circularly polarized light, it is
unambiguously shown that the moment at the Mo sites is below the limit of
detection (< 0.25mu_B), resolving a previous controversy. We also show that the
decrease of the observed moment in magnetization measurements from the
theoretically expected value is driven by the presence of mis-site disorder
between Fe and Mo sites.Comment: To appear in Physical Review Letter
Transcriptional profiling of rat white adipose tissue response to 2,3,7,8-tetrachlorodibenzo-p-dioxin
Polychlorinated dibenzodioxins are environmental contaminants commonly produced as a by-product of industrial processes. The most potent of these, 2,3,7,8-tetrachlorodibenzo-rho-dioxin (TCDD), is highly lipophilic, leading to bioaccumulation. White adipose tissue (WAT) is a major site for energy storage, and is one of the organs in which TCDD accumulates. In laboratory animals, exposure to TCDD causes numerous metabolic abnormalities, including a wasting syndrome. We therefore investigated the molecular effects of TCDD exposure on WAT by profiling the transcriptomic response of WAT to 100 mu g/kg of TCDD at 1 or 4 days in TCDD-sensitive Long-Evans (Turku/AB; L-E) rats. A comparative analysis was conducted simultaneously in identically treated TCDD-resistant Han/Wistar (Kuopio; H/W) rats one day after exposure to the same dose. We sought to identify transcriptomic changes coinciding with the onset of toxicity, while gaining additional insight into later responses. More transcriptional responses to TCDD were observed at 4 days than at I day post-exposure, suggesting WAT shows mostly secondary responses. Two classic AHR-regulated genes, Cyp1a1 and Nqo1, were significantly induced by TCDD in both strains, while several genes involved in the immune response, including Ms4a7 and Fl1a1 were altered in L-E rats alone. We compared genes affected by TCDD in rat WAT and human adipose cells, and observed little overlap. Interestingly, very few genes involved in lipid metabolism exhibited altered expression levels despite the pronounced lipid mobilization from peripheral fat pads by TCDD in L-E rats. Of these genes, the lipolysis-associated Lpin1 was induced slightly over 2-fold in L-E rat WAT on day 4. (C) 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license.Peer reviewe
Effective three-band model for double perovskites
We start from a six-band model describing the transition-metal t2g orbitals
of half-metallic double perovskite systems, such as Sr2FeMoO6, in which only
one of the transition metal ions (Fe) contains important intratomic repulsion
Ufe. By eliminating the Mo orbitals using a low-energy reduction similar to
that used in the cuprates, we construct a Hamiltonian which contains only
effective t2g Fe orbitals. This allows to treat exactly Ufe, and most of the
Fe-Mo hopping. As an application, we treat the effective Hamiltonian in the
slave-boson mean-field approximation and calculate the position of the
metal-insulator transition and other quantities as a function of pressure or
on-site energy difference.Comment: 8 pages, 3 figure
- …