9,762 research outputs found

    Orbital magnetoelectric coupling in band insulators

    Full text link
    Magnetoelectric responses are a fundamental characteristic of materials that break time-reversal and inversion symmetries (notably multiferroics) and, remarkably, of "topological insulators" in which those symmetries are unbroken. Previous work has shown how to compute spin and lattice contributions to the magnetoelectric tensor. Here we solve the problem of orbital contributions by computing the frozen-lattice electronic polarization induced by a magnetic field. One part of this response (the "Chern-Simons term") can appear even in time-reversal-symmetric materials and has been previously shown to be quantized in topological insulators. In general materials there are additional orbital contributions to all parts of the magnetoelectric tensor; these vanish in topological insulators by symmetry and also vanish in several simplified models without time-reversal and inversion those magnetoelectric couplings were studied before. We give two derivations of the response formula, one based on a uniform magnetic field and one based on extrapolation of a long-wavelength magnetic field, and discuss some of the consequences of this formula.Comment: 13 page

    Electron-phonon bound states in graphene in a perpendicular magnetic field

    Full text link
    The spectrum of electron-phonon complexes in a monolayer graphene is investigated in the presence of a perpendicular quantizing magnetic field. Despite the small electron-phonon coupling, usual perturbation theory is inapplicable for calculation of the scattering amplitude near the threshold of the optical phonon emission. Our findings beyond perturbation theory show that the true spectrum near the phonon emission threshold is completely governed by new branches, corresponding to bound states of an electron and an optical phonon with a binding energy of the order of αω0\alpha \omega_{0} where α\alpha is the electron-phonon coupling and ω0\omega_{0} the phonon energy.Comment: To be published in Phys. Rev. Lett., 5 pages, 3 figures, 1 tabl

    Quantum dot dephasing by edge states

    Full text link
    We calculate the dephasing rate of an electron state in a pinched quantum dot, due to Coulomb interactions between the electron in the dot and electrons in a nearby voltage biased ballistic nanostructure. The dephasing is caused by nonequilibrium time fluctuations of the electron density in the nanostructure, which create random electric fields in the dot. As a result, the electron level in the dot fluctuates in time, and the coherent part of the resonant transmission through the dot is suppressed

    High field transport in strained Si/GeSi double heterostructure: a Fokker-Planck approach

    Full text link
    We report calculations of high electric field transport for the case of a strained Si/GeSi double heterostructure (DHS) considering transport along the Si channel and by applying the analytical Fokker-Planck approach (FPA), where the process is modeled as drift-diffusion in energy space. We limit ourselves to electronic transport in the conduction band of the strained Si, where an energy shift between the otherwise degenerate six energy valleys characterizes the band alingment in the DHS. Intervalley phonon scatterings are considered while intravalley acoustic phonon scattering is ignored, leading to results valid for high enough temperatures. Our results are compared to previous theoretical works where Monte Carlo simulations were applied. A reasonable agreement between the two approaches is obtained in the high electric field regime.Comment: 8 pages, 3 figure

    Diffuse emission in the presence of inhomogeneous spin-orbit interaction for the purpose of spin filtration

    Full text link
    A lateral interface connecting two regions with different strengths of the Bychkov-Rashba spin-orbit interaction can be used as a spin polarizer of electrons in two dimensional semiconductor heterostructures. [Khodas \emph{et al.}, Phys. Rev. Lett. \textbf{92}, 086602 (2004)]. In this paper we consider the case when one of the two regions is ballistic, while the other one is diffusive. We generalize the technique developed for the solution of the problem of the diffuse emission to the case of the spin dependent scattering at the interface, and determine the distribution of electrons emitted from the diffusive region. It is shown that the diffuse emission is an effective way to get electrons propagating at small angles to the interface that are most appropriate for the spin filtration and a subsequent spin manipulation. Finally, a scheme is proposed of a spin filter device, see Fig. 9, that creates two almost fully spin-polarized beams of electrons.Comment: 11 pages, 9 figure

    Reliability assessment of the GEOS A power supply

    Get PDF
    Reliability assessment of geodetic satellite A power suppl

    Giant isotope effect in the incoherent tunneling specific heat of the molecular nanomagnet Fe8

    Get PDF
    Time-dependent specific heat experiments on the molecular nanomagnet Fe8 and the isotopic enriched analogue 57Fe8 are presented. The inclusion of the 57Fe nuclear spins leads to a huge enhancement of the specific heat below 1 K, ascribed to a strong increase in the spin-lattice relaxation rate Gamma arising from incoherent, nuclear-spin-mediated magnetic quantum tunneling in the ground-doublet. Since Gamma is found comparable to the expected tunneling rate, the latter process has to be inelastic. A model for the coupling of the tunneling levels to the lattice is presented. Under transverse field, a crossover from nuclear-spin-mediated to phonon-induced tunneling is observed.Comment: Replaced with version accepted for publication in Physical Review Letter
    • …
    corecore