10,150 research outputs found

    ABTRAJ on-site tracking prediction program

    Get PDF
    Computer program, ABTRAJ, provides Deep Space Network tracking stations with the capability of generating spacecraft predictions with on-site computers. The program is comprised of two major sections - the main prediction portion and a trajectory subroutine which spans the desired predict interval with spacecraft ephemeris data written on magnetic tapes

    Avoiding Quantum Chaos in Quantum Computation

    Full text link
    We study a one-dimensional chain of nuclear 1/21/2-spins in an external time-dependent magnetic field. This model is considered as a possible candidate for experimental realization of quantum computation. According to the general theory of interacting particles, one of the most dangerous effects is quantum chaos which can destroy the stability of quantum operations. According to the standard viewpoint, the threshold for the onset of quantum chaos due to an interaction between spins (qubits) strongly decreases with an increase of the number of qubits. Contrary to this opinion, we show that the presence of a magnetic field gradient helps to avoid quantum chaos which turns out to disappear with an increase of the number of qubits. We give analytical estimates which explain this effect, together with numerical data supportingComment: RevTex, 5 pages including 3 eps-figure

    Dynamical excitations in the collision of 2D Bose-Einstein condensates

    Full text link
    We carry out simulations of the collision of two components of an adiabatically divided, quasi-2D BEC. We identify under, over and critically damped regimes in the dipole oscillations of the components according to the balance of internal and centre-of-mass (c.m.) energies of the components and investigate the creation of internal excitations. We distinguish the behaviour of this system from previous studies of quasi-1D BEC's. In particular we note that the nature of the internal excitations is only essentially sensitive to an initial phase difference between the components in the overdamped regime.Comment: 17 pages, 9 figure

    Multiphoton Coincidence Spectroscopy

    Full text link
    We extend the analysis of photon coincidence spectroscopy beyond bichromatic excitation and two-photon coincidence detection to include multichromatic excitation and multiphoton coincidence detection. Trichromatic excitation and three-photon coincidence spectroscopy are studied in detail, and we identify an observable signature of a triple resonance in an atom-cavity system.Comment: 6 page, REVTeXs, 6 Postscript figures. The abstract appeared in the Proceedings of ACOLS9

    Meanfield treatment of Bragg scattering from a Bose-Einstein condensate

    Full text link
    A unified semiclassical treatment of Bragg scattering from Bose-Einstein condensates is presented. The formalism is based on the Gross-Pitaevskii equation driven by classical light fields far detuned from atomic resonance. An approximate analytic solution is obtained and provides quantitative understanding of the atomic momentum state oscillations, as well as a simple expression for the momentum linewidth of the scattering process. The validity regime of the analytic solution is derived, and tested by three dimensional cylindrically symmetric numerical simulations.Comment: 21 pages, 10 figures. Minor changes made to documen

    Double-Slit Interferometry with a Bose-Einstein Condensate

    Full text link
    A Bose-Einstein "double-slit" interferometer has been recently realized experimentally by (Y. Shin et. al., Phys. Rev. Lett. 92 50405 (2004)). We analyze the interferometric steps by solving numerically the time-dependent Gross-Pitaevski equation in three-dimensional space. We focus on the adiabaticity time scales of the problem and on the creation of spurious collective excitations as a possible source of the strong dephasing observed experimentally. The role of quantum fluctuations is discussed.Comment: 4 pages, 3 figure

    Dynamical Stability and Quantum Chaos of Ions in a Linear Trap

    Full text link
    The realization of a paradigm chaotic system, namely the harmonically driven oscillator, in the quantum domain using cold trapped ions driven by lasers is theoretically investigated. The simplest characteristics of regular and chaotic dynamics are calculated. The possibilities of experimental realization are discussed.Comment: 24 pages, 17 figures, submitted to Phys. Rev

    Breakdown of Universality in Quantum Chaotic Transport: the Two-Phase Dynamical Fluid Model

    Full text link
    We investigate the transport properties of open quantum chaotic systems in the semiclassical limit. We show how the transmission spectrum, the conductance fluctuations, and their correlations are influenced by the underlying chaotic classical dynamics, and result from the separation of the quantum phase space into a stochastic and a deterministic phase. Consequently, sample-to-sample conductance fluctuations lose their universality, while the persistence of a finite stochastic phase protects the universality of conductance fluctuations under variation of a quantum parameter.Comment: 4 pages, 3 figures in .eps format; final version to appear in Physical Review Letter
    corecore