149 research outputs found

    Full two-electron calculations of antiproton collisions with molecular hydrogen

    Full text link
    Total cross sections for single ionization and excitation of molecular hydrogen by antiproton impact are presented over a wide range of impact energy from 1 keV to 6.5 MeV. A nonpertubative time-dependent close-coupling method is applied to fully treat the correlated dynamics of the electrons. Good agreement is obtained between the present calculations and experimental measurements of single-ionization cross sections at high energies, whereas some discrepancies with the experiment are found around the maximum. The importance of the molecular geometry and a full two-electron description is demonstrated. The present findings provide benchmark results which might be useful for the development of molecular models.Comment: 4 pages, 3 figure

    Collisions of antiprotons with hydrogen molecular ions

    Full text link
    Time-dependent close-coupling calculations of the ionization and excitation cross section for antiproton collisions with molecular hydrogen ions are performed in an impact-energy range from 0.5 keV to 10 MeV. The Born-Oppenheimer and Franck-Condon approximations as well as the impact parameter method are applied in order to describe the target molecule and the collision process. It is shown that three perpendicular orientations of the molecular axis with respect to the trajectory are sufficient to accurately reproduce the ionization cross section calculated by [Sakimoto, Phys. Rev. A 71, 062704 (2005)] reducing the numerical effort drastically. The independent-event model is employed to approximate the cross section for double ionization and H+ production in antiproton collisions with H2.Comment: 12 pages, 5 figures, 4 table

    Comprehensive study of ULF upstream waves observed in the topside ionosphere by CHAMP and on the ground

    Get PDF
    Based on magnetic field measurements from the satellite CHAMP, a detailed picture could be obtained of the upstream wave (UW) distribution in the topside ionosphere. The low, near-polar orbit of CHAMP, covering all local times, allows the global distribution of this type of pulsation to be revealed. The observations from space are compared to recordings of the ground-based MM100 meridional array covering the latitude range 66° to 42° in magnetic coordinates. UWs show up very clearly in the compressional component of the satellite magnetic field data, whereas on the ground, their signature is found in the H component, but it is mixed with oscillations from field line resonant pulsations. Here we first introduce a procedure for an automated detection of UW signatures, both in ground and space data. Then a statistical analysis is presented of UW pulsations recorded during a 132-day period, centred on the autumn 2001 equinox. Observations in the top-side ionosphere reveal a clear latitudinal distribution of the amplitudes. Largest signals are observed at the equator. Minima show up at about 40° latitude. The coherence between ground and satellite wave signatures is high over wide latitude and longitude ranges. We make suggestions about the entry mechanism of UWs from the foreshock region into the magnetosphere. The clear UW signature in satellite recordings between −60° and 60° latitude allows for detailed investigations of the dependence on solar wind conditions. We test the control of solar wind speed, interplanetary magnetic field strength and cone angle on UWs. For the first time, it is possible to derive details of the Doppler-shift effect by modifying the UW frequency from direct observations. The results reconcile foreshock wave generation predictions with near-Earth observations

    Near-equatorial Pi2 and Pc3 waves observed by CHAMP and on SAMBA/MAGDAS stations

    Get PDF
    We have examined simultaneous ULF activity in the Pi2 and Pc3 bands at the near-equatorial magnetic stations in South America from SAMBA and MAGDAS arrays and low-orbiting CHAMP satellite during its passage over this meridional network. At the nighttime, both Pi2 and Pc3 waves in the upper ionosphere and on the ground are nearly of the same magnitude and in-phase. At the same time, the daytime Pc3 pulsations on the ground and in space are nearly out-of-phase. Comparison of observational results with the theoretical notions on the MHD wave interaction with the system ionosphere–atmosphere–ground suggests that nighttime low-latitude Pi2 and Pc3 wave signatures are produced by magnetospheric fast compressional mode. The daytime near-equatorial Pc3 waves still resist a quantative interpretation. These waves may be produced by a combination of two mechanisms: compressional mode leakage through the ionosphere, and by oscillatory ionospheric current spreading towards equatorial latitudes

    Scale analysis of equatorial plasma irregularities derived from Swarm constellation

    Get PDF
    In this study, we investigated the scale sizes of equatorial plasma irregularities (EPIs) using measurements from the Swarm satellites during its early mission and final constellation phases. We found that with longitudinal separation between Swarm satellites larger than 0.4°, no significant correlation was found any more. This result suggests that EPI structures include plasma density scale sizes less than 44 km in the zonal direction. During the Swarm earlier mission phase, clearly better EPI correlations are obtained in the northern hemisphere, implying more fragmented irregularities in the southern hemisphere where the ambient magnetic field is low. The previously reported inverted-C shell structure of EPIs is generally confirmed by the Swarm observations in the northern hemisphere, but with various tilt angles. From the Swarm spacecrafts with zonal separations of about 150 km, we conclude that larger zonal scale sizes of irregularities exist during the early evening hours (around 1900 LT)

    HP1γ function is required for male germ cell survival and spermatogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HP1 proteins are conserved components of eukaryotic constitutive heterochromatin. In mammals, there are three genes that encode HP1-like proteins, termed HP1α, HP1β and HP1γ, which have a high degree of homology This paper describes for the first time, to our knowledge, the physiological function of HP1γ using a gene-targeted mouse.</p> <p>Results</p> <p>While targeting the <it>Cbx3 </it>gene (encoding the HP1γ protein) with a conditional targeting vector, we generated a hypomorphic allele (<it>Cbx3</it><sup><it>hypo</it></sup>), which resulted in much reduced (barely detectable) levels of HP1γ protein. Homozygotes for the hypomorphic allele (<it>Cbx3</it><sup><it>hypo</it>/<it>hypo</it></sup>) are rare, with only 1% of <it>Cbx3</it><sup><it>hypo</it>/<it>hypo </it></sup>animals reaching adulthood. Adult males exhibit a severe hypogonadism that is associated with a loss of germ cells, with some seminiferous tubules retaining only the supporting Sertoli cells (Sertoli cell-only phenotype). The percentage of seminiferous tubules that are positive for L1 ORF1 protein (ORF1p) in <it>Cbx3</it><sup><it>hypo</it>/<it>hypo </it></sup>testes is greater than that for wild-type testes, indicating that L1 retrotransposon silencing is reversed, leading to ectopic expression of ORF1p in <it>Cbx3</it><sup><it>hypo</it>/<it>hypo </it></sup>germ cells.</p> <p>Conclusions</p> <p>The <it>Cbx3 </it>gene product (the HP1γ protein) has a non-redundant function during spermatogenesis that cannot be compensated for by the other two HP1 isotypes. The <it>Cbx3</it><sup><it>hypo</it>/<it>hypo </it></sup>spermatogenesis defect is similar to that found in <it>Miwi2 </it>and <it>Dnmt3L </it>mutants. The <it>Cbx3 </it>gene-targeted mice generated in this study provide an appropriate model for the study of HP1γ in transposon silencing and parental imprinting.</p
    • …
    corecore