1,643 research outputs found
Adaptor Protein 2 (Ap-2) Complex is Essential for Functional Axogenesis in Hippocampal Neurons
The complexity and diversity of a neural network requires regulated elongation and branching of axons, as well as the formation of synapses between neurons. In the present study we explore the role of AP-2, a key endocytic adaptor protein complex, in the development of rat hippocampal neurons. We found that the loss of AP-2 during the early stage of development resulted in impaired axon extension and failed maturation of the axon initial segment (AIS). Normally the AIS performs two tasks in
concert, stabilizing neural polarity and generating action potentials. In AP-2 silenced axons polarity is established, however there is a failure to establish action potential firing. Consequently, this impairs activity-driven Ca2+ influx and exocytosis at nerve terminals. In contrast, removal of AP-2 from older neurons does not impair axonal growth or signaling and synaptic function. Our data reveal that AP-2 has important roles in functional axogenesis by proper extension of axon as well as the formation of AIS during the early step of neurodevelopment
Biphasic Electrical Currents Stimulation Promotes both Proliferation and Differentiation of Fetal Neural Stem Cells
The use of non-chemical methods to differentiate stem cells has attracted
researchers from multiple disciplines, including the engineering and the
biomedical fields. No doubt, growth factor based methods are still the most
dominant of achieving some level of proliferation and differentiation control -
however, chemical based methods are still limited by the quality, source, and
amount of the utilized reagents. Well-defined non-chemical methods to
differentiate stem cells allow stem cell scientists to control stem cell biology
by precisely administering the pre-defined parameters, whether they are
structural cues, substrate stiffness, or in the form of current flow. We have
developed a culture system that allows normal stem cell growth and the option of
applying continuous and defined levels of electric current to alter the cell
biology of growing cells. This biphasic current stimulator chip employing ITO
electrodes generates both positive and negative currents in the same culture
chamber without affecting surface chemistry. We found that biphasic electrical
currents (BECs) significantly increased the proliferation of fetal neural stem
cells (NSCs). Furthermore, BECs also promoted the differentiation of fetal NSCs
into neuronal cells, as assessed using immunocytochemistry. Our results clearly
show that BECs promote both the proliferation and neuronal differentiation of
fetal NSCs. It may apply to the development of strategies that employ NSCs in
the treatment of various neurodegenerative diseases, such as Alzheimer's
and Parkinson's diseases
Potential prognostic value of heat-shock protein 90 in the presence of phosphatidylinositol-3-kinase overexpression or loss of PTEN, in invasive breast cancers
This is an open access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.Abstract
Introduction
Evaluating the expression of signaling molecule proteins from the mitogen-activated protein kinase (MAPK) pathway and the phosphatidylinositol-3-kinase (PI3K) pathway in invasive breast cancers may identify prognostic marker(s) associated with early relapse.
Methods
Immunohistochemical analyses of phosphatase and tensin homologue deleted on chromosome 10 (PTEN), PI3K-p110α, phospho-AKT, phospho-p70S6 kinase, phospho-S6 ribosomal protein, phospho-RAF, phospho-p44/42 MAPK, and heat-shock protein 90 (HSP90) were performed on tumor samples from 212 patients with invasive breast cancer. Statistically significant relations between protein expression, clinicopathologic factors, and relapse-free survival (RFS) were analyzed.
Results
Expression of HSP90 was associated with 5-year RFS, as well as T stage, N stage, histologic grade, estrogen receptor (ER) expression, human epidermal growth factor receptor 2 (HER2) expression, and the Ki-67 proliferation index. On multivariate analysis, coexpression of HSP90 and PI3K-p110α or expression of HSP90 along with PTEN loss demonstrated significantly worse RFS. In subgroup analyses, both exhibited strong prognostic significance in HER2-positive cases, but not in HER2-negative cases.
Conclusions
The coexpression of HSP90 with PI3K-p110α or expression of HSP90 along with PTEN loss has a potential as a molecular prognostic marker to predict early relapse in patients with invasive breast cancers
Biphasic Electrical Currents Stimulation Promotes both Proliferation and Differentiation of Fetal Neural Stem Cells
The use of non-chemical methods to differentiate stem cells has attracted
researchers from multiple disciplines, including the engineering and the
biomedical fields. No doubt, growth factor based methods are still the most
dominant of achieving some level of proliferation and differentiation control -
however, chemical based methods are still limited by the quality, source, and
amount of the utilized reagents. Well-defined non-chemical methods to
differentiate stem cells allow stem cell scientists to control stem cell biology
by precisely administering the pre-defined parameters, whether they are
structural cues, substrate stiffness, or in the form of current flow. We have
developed a culture system that allows normal stem cell growth and the option of
applying continuous and defined levels of electric current to alter the cell
biology of growing cells. This biphasic current stimulator chip employing ITO
electrodes generates both positive and negative currents in the same culture
chamber without affecting surface chemistry. We found that biphasic electrical
currents (BECs) significantly increased the proliferation of fetal neural stem
cells (NSCs). Furthermore, BECs also promoted the differentiation of fetal NSCs
into neuronal cells, as assessed using immunocytochemistry. Our results clearly
show that BECs promote both the proliferation and neuronal differentiation of
fetal NSCs. It may apply to the development of strategies that employ NSCs in
the treatment of various neurodegenerative diseases, such as Alzheimer's
and Parkinson's diseases
NESH Regulates Dendritic Spine Morphology and Synapse Formation
Background: Dendritic spines are small membranous protrusions on the neuronal dendrites that receive synaptic input from axon terminals. Despite their importance for integrating the enormous information flow in the brain, the molecular mechanisms regulating spine morphogenesis are not well understood. NESH/Abi-3 is a member of the Abl interactor (Abi) protein family, and its overexpression is known to reduce cell motility and tumor metastasis. NESH is prominently expressed in the brain, but its function there remains unknown. Methodology/Principal Findings: NESH was strongly expressed in the hippocampus and moderately expressed in the cerebral cortex, cerebellum and striatum, where it co-localized with the postsynaptic proteins PSD95, SPIN90 and F-actin in dendritic spines. Overexpression of NESH reduced numbers of mushroom-type spines and synapse density but increased thin, filopodia-like spines and had no effect on spine density. siRNA knockdown of NESH also reduced mushroom spine numbers and inhibited synapse formation but it increased spine density. The N-terminal region of NESH co-sedimented with filamentous actin (F-actin), which is an essential component of dendritic spines, suggesting this interaction is important for the maturation of dendritic spines. Conclusions/Significance: NESH is a novel F-actin binding protein that likely plays important roles in the regulation o
P130Cas Attenuates Epidermal Growth Factor (EGF) Receptor Internalization by Modulating EGF-Triggered Dynamin Phosphorylation
BACKGROUND: Endocytosis controls localization-specific signal transduction via epidermal growth factor receptor (EGFR), as well as downregulation of that receptor. Extracellular matrix (ECM)-integrin coupling induces formation of macromolecular complexes that include EGFR, integrin, Src kinase and p130Cas, resulting in EGFR activation. In addition, cell adhesion to ECM increases EGFR localization at the cell surface and reduces EGFR internalization. The molecular mechanisms involved are not yet well understood. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the molecular mechanism by which p130Cas affects the endocytic regulation of EGFR. Biochemical quantification revealed that cell adhesion to fibronectin (FN) increases total EGFR levels and its phosphorylation, and that p130Cas is required for this process. Measurements of Texas Red-labeled EGF uptake and cell surface EGFR revealed that p130Cas overexpression reduces EGF-induced EGFR internalization, while p130Cas depletion enhances it. In addition, both FN-mediated cell adhesion and p130Cas overexpression reduce EGF-stimulated dynamin phosphorylation, which is necessary for EGF-induced EGFR internalization. Coimmunoprecipitation and GST pull-down assays confirmed the interaction between p130Cas and dynamin. Moreover, a SH3-domain-deleted form of p130Cas, which shows diminished binding to dynamin, inhibits dynamin phosphorylation and EGF uptake less effectively than wild-type p130Cas. CONCLUSIONS/SIGNIFICANCE: Our results show that p130Cas plays an inhibitory role in EGFR internalization via its interaction with dynamin. Given that the EGFR internalization process determines signaling density and specificity in the EGFR pathway, these findings suggest that the interaction between p130Cas and dynamin may regulate EGFR trafficking and signaling in the same manner as other endocytic regulatory proteins related to EGFR endocytosis
Investigation of previously implicated genetic variants in chronic tic disorders: a transmission disequilibrium test approach
Genetic studies in Tourette syndrome (TS) are characterized by scattered and poorly replicated findings. We aimed to replicate findings from candidate gene and genome-wide association studies (GWAS). Our cohort included 465 probands with chronic tic disorder (93% TS) and both parents from 412 families (some probands were siblings). We assessed 75 single nucleotide polymorphisms (SNPs) in 465 parent–child trios; 117 additional SNPs in 211 trios; and 4 additional SNPs in 254 trios. We performed SNP and gene-based transmission disequilibrium tests and compared nominally significant SNP results with those from a large independent case–control cohort. After quality control 71 SNPs were available in 371 trios; 112 SNPs in 179 trios; and 3 SNPs in 192 trios. 17 were candidate SNPs implicated in TS and 2 were implicated in obsessive–compulsive disorder (OCD) or autism spectrum disorder (ASD); 142 were tagging SNPs from eight monoamine neurotransmitter-related genes (including dopamine and serotonin); 10 were top SNPs from TS GWAS; and 13 top SNPs from attention-deficit/hyperactivity disorder, OCD, or ASD GWAS. None of the SNPs or genes reached significance after adjustment for multiple testing. We observed nominal significance for the candidate SNPs rs3744161 (TBCD) and rs4565946 (TPH2) and for five tagging SNPs; none of these showed significance in the independent cohort. Also, SLC1A1 in our gene-based analysis and two TS GWAS SNPs showed nominal significance, rs11603305 (intergenic) and rs621942 (PICALM). We found no convincing support for previously implicated genetic polymorphisms. Targeted re-sequencing should fully appreciate the relevance of candidate genes
Gene-Environment Interactions Relevant to Estrogen and Risk of Breast Cancer: Can Gene-Environment Interactions Be Detected Only among Candidate SNPs from Genome-Wide Association Studies?
In this study we aim to examine gene–environment interactions (GxEs) between genes involved with estrogen metabolism and environmental factors related to estrogen exposure. GxE analyses were conducted with 1970 Korean breast cancer cases and 2052 controls in the case-control study, the Seoul Breast Cancer Study (SEBCS). A total of 11,555 SNPs from the 137 candidate genes were included in the GxE analyses with eight established environmental factors. A replication test was conducted by using an independent population from the Breast Cancer Association Consortium (BCAC), with 62,485 Europeans and 9047 Asians. The GxE tests were performed by using two-step methods in GxEScan software. Two interactions were found in the SEBCS. The first interaction was shown between rs13035764 of NCOA1 and age at menarche in the GE|2df model (p-2df = 1.2 × 10−3). The age at menarche before 14 years old was associated with the high risk of breast cancer, and the risk was higher when subjects had homozygous minor allele G. The second GxE was shown between rs851998 near ESR1 and height in the GE|2df model (p-2df = 1.1 × 10−4). Height taller than 160 cm was associated with a high risk of breast cancer, and the risk increased when the minor allele was added. The findings were not replicated in the BCAC. These results would suggest specificity in Koreans for breast cancer risk
Gene-Environment Interactions Relevant to Estrogen and Risk of Breast Cancer: Can Gene-Environment Interactions Be Detected Only among Candidate SNPs from Genome-Wide Association Studies?
In this study we aim to examine gene–environment interactions (GxEs) between genes involved with estrogen metabolism and environmental factors related to estrogen exposure. GxE analyses were conducted with 1970 Korean breast cancer cases and 2052 controls in the case-control study, the Seoul Breast Cancer Study (SEBCS). A total of 11,555 SNPs from the 137 candidate genes were included in the GxE analyses with eight established environmental factors. A replication test was conducted by using an independent population from the Breast Cancer Association Consortium (BCAC), with 62,485 Europeans and 9047 Asians. The GxE tests were performed by using two-step methods in GxEScan software. Two interactions were found in the SEBCS. The first interaction was shown between rs13035764 of NCOA1 and age at menarche in the GE|2df model (p-2df = 1.2 × 10−3). The age at menarche before 14 years old was associated with the high risk of breast cancer, and the risk was higher when subjects had homozygous minor allele G. The second GxE was shown between rs851998 near ESR1 and height in the GE|2df model (p-2df = 1.1 × 10−4). Height taller than 160 cm was associated with a high risk of breast cancer, and the risk increased when the minor allele was added. The findings were not replicated in the BCAC. These results would suggest specificity in Koreans for breast cancer risk
Synaptic processes and immune-related pathways implicated in Tourette syndrome
Tourette syndrome (TS) is a neuropsychiatric disorder of complex genetic architecture involving multiple interacting genes. Here, we sought to elucidate the pathways that underlie the neurobiology of the disorder through genome-wide analysis. We analyzed genome-wide genotypic data of 3581 individuals with TS and 7682 ancestry-matched controls and investigated associations of TS with sets of genes that are expressed in particular cell types and operate in specific neuronal and glial functions. We employed a self-contained, set-based association method (SBA) as well as a competitive gene set method (MAGMA) using individual-level genotype data to perform a comprehensive investigation of the biological background of TS. Our SBA analysis identified three significant gene sets after Bonferroni correction, implicating ligand-gated ion channel signaling, lymphocytic, and cell adhesion and transsynaptic signaling processes. MAGMA analysis further supported the involvement of the cell adhesion and trans-synaptic signaling gene set. The lymphocytic gene set was driven by variants in FLT3, raising an intriguing hypothesis for the involvement of a neuroinflammatory element in TS pathogenesis. The indications of involvement of ligand-gated ion channel signaling reinforce the role of GABA in TS, while the association of cell adhesion and trans-synaptic signaling gene set provides additional support for the role of adhesion molecules in neuropsychiatric disorders. This study reinforces previous findings but also provides new insights into the neurobiology of TS
- …