110 research outputs found

    Distribution, biomass and production of Ceratonereis erythraeensis (Fauvel) and Ceratonereis keiskama (Day) at the Berg River Estuary, South Africa

    Get PDF
    Population dynamics of the polychaetes Ceratonereis keiskama and C. erythraeensis were studied at the Berg River estuary, South Africa, from December 1987 to April 1989. There was marked size-related depth stratification of both species, with small worms being concentrated in the upper layer of the substratum and larger ones deeper down. Reproduction of both species occurred in summer. Three cohorts were distinguished in both populations. Recruitment of C. keiskama peaked in December whereas that of C. erythraeensis varied between years and sites (December-April). The population biomass of C. keiskama peaked in midsummer and was lowest during the spring and winter. C. erythraeensis maintained a high population biomass during winter and reached its lowest biomass during January-February. The total annual production of C. keiskama in the restricted area of the estuary where it occurred was 7,58 g m−2 y−1, with a mean annual biomass of 4,11 g m−2 making P/B = 1,84. Total annual production of C. erythraeensis for the whole estuary was 14,42 g m−2 y−1, mean annual biomass was 7,59 g m−2, and P/B = 1,90

    Natural killer cells attenuate cytomegalovirus-induced hearing loss in mice

    Get PDF
    <div><p>Congenital cytomegalovirus (CMV) infection is the most common non-hereditary cause of sensorineural hearing loss (SNHL) yet the mechanisms of hearing loss remain obscure. Natural Killer (NK) cells play a critical role in regulating murine CMV infection via NK cell recognition of the Ly49H cell surface receptor of the viral-encoded m157 ligand expressed at the infected cell surface. This Ly49H NK receptor/m157 ligand interaction has been found to mediate host resistance to CMV in the spleen, and lung, but is much less effective in the liver, so it is not known if this interaction is important in the context of SNHL. Using a murine model for CMV-induced labyrinthitis, we have demonstrated that the Ly49H/m157 interaction mediates host resistance in the temporal bone. BALB/c mice, which lack functional Ly49H, inoculated with mCMV at post-natal day 3 developed profound hearing loss and significant outer hair cell loss by 28 days of life. In contrast, C57BL/6 mice, competent for the Ly49H/m157 interaction, had minimal hearing loss and attenuated outer hair cell loss with the same mCMV dose. Administration of Ly49H blocking antibody or inoculation with a mCMV viral strain deleted for the m157 gene rendered the previously resistant C57BL/6 mouse strain susceptible to hearing loss to a similar extent as the BALB/c mouse strain indicating a direct role of the Ly49H/m157 interaction in mCMV-dependent hearing loss. Additionally, NK cell recruitment to sites of infection was evident in the temporal bone of inoculated susceptible mouse strains. These results demonstrate participation of NK cells in protection from CMV-induced labyrinthitis and SNHL in mice.</p></div

    A novel germline mutation of PTEN associated with brain tumours of multiple lineages

    Get PDF
    We have identified a novel germline mutation in the PTEN tumour suppressor gene. The mutation was identified in a patient with a glioma, and turned out to be a heterozygous germline mutation of PTEN (Arg234Gln), without loss of heterozygosity in tumour DNA. The biological consequences of this germline mutation were investigated by means of transfection studies of the mutant PTEN molecule compared to wild-type PTEN. In contrast to the wild-type molecule, the mutant PTEN protein is not capable of inducing apoptosis, induces increased cell proliferation and leads to high constitutive PKB/Akt activation, which cannot be increased anymore by stimulation with insulin. The reported patient, in addition to glioma, had suffered from benign meningioma in the past but did not show any clinical signs of Cowden disease or other hereditary diseases typically associated with PTEN germline mutations. The functional consequences of the mutation in transfection studies are consistent with high proliferative activity. Together, these findings suggest that the Arg234Gln missense mutation in PTEN has oncogenic properties and predisposes to brain tumours of multiple lineages

    Functional Interaction of Nuclear Domain 10 and Its Components with Cytomegalovirus after Infections: Cross-Species Host Cells versus Native Cells

    Get PDF
    Species-specificity is one of the major characteristics of cytomegaloviruses (CMVs) and is the primary reason for the lack of a mouse model for the direct infection of human CMV (HCMV). It has been determined that CMV cross-species infections are blocked at the post-entry level by intrinsic cellular defense mechanisms, but few details are known. It is important to explore how CMVs interact with the subnuclear structure of the cross-species host cell. In our present study, we discovered that nuclear domain 10 (ND10) of human cells was not disrupted by murine CMV (MCMV) and that the ND10 of mouse cells was not disrupted by HCMV, although the ND10-disrupting protein, immediate-early protein 1 (IE1), also colocalized with ND10 in cross-species infections. In addition, we found that the UL131-repaired HCMV strain AD169 (vDW215-BADrUL131) can infect mouse cells to produce immediate-early (IE) and early (E) proteins but that neither DNA replication nor viral particles were detectable in mouse cells. Unrepaired AD169 can express IE1 only in mouse cells. In both HCMV-infected mouse cells and MCMV-infected human cells, the knocking-down of ND10 components (PML, Daxx, and SP100) resulted in significantly increased viral-protein production. Our observations provide evidence to support our hypothesis that ND10 and ND10 components might be important defensive factors against the CMV cross-species infection

    Global Regulation of Nucleotide Biosynthetic Genes by c-Myc

    Get PDF
    The c-Myc transcription factor is a master regulator and integrates cell proliferation, cell growth and metabolism through activating thousands of target genes. Our identification of direct c-Myc target genes by chromatin immunoprecipitation (ChIP) coupled with pair-end ditag sequencing analysis (ChIP-PET) revealed that nucleotide metabolic genes are enriched among c-Myc targets, but the role of Myc in regulating nucleotide metabolic genes has not been comprehensively delineated.Here, we report that the majority of genes in human purine and pyrimidine biosynthesis pathway were induced and directly bound by c-Myc in the P493-6 human Burkitt's lymphoma model cell line. The majority of these genes were also responsive to the ligand-activated Myc-estrogen receptor fusion protein, Myc-ER, in a Myc null rat fibroblast cell line, HO.15 MYC-ER. Furthermore, these targets are also responsive to Myc activation in transgenic mouse livers in vivo. To determine the functional significance of c-Myc regulation of nucleotide metabolism, we sought to determine the effect of loss of function of direct Myc targets inosine monophosphate dehydrogenases (IMPDH1 and IMPDH2) on c-Myc-induced cell growth and proliferation. In this regard, we used a specific IMPDH inhibitor mycophenolic acid (MPA) and found that MPA dramatically inhibits c-Myc-induced P493-6 cell proliferation through S-phase arrest and apoptosis.Taken together, these results demonstrate the direct induction of nucleotide metabolic genes by c-Myc in multiple systems. Our finding of an S-phase arrest in cells with diminished IMPDH activity suggests that nucleotide pool balance is essential for c-Myc's orchestration of DNA replication, such that uncoupling of these two processes create DNA replication stress and apoptosis

    Evidence that Proteasome-Dependent Degradation of the Retinoblastoma Protein in Cells Lacking A-Type Lamins Occurs Independently of Gankyrin and MDM2

    Get PDF
    A-type lamins, predominantly lamins A and C, are nuclear intermediate filaments believed to act as scaffolds for assembly of transcription factors. Lamin A/C is necessary for the retinoblastoma protein (pRB) stabilization through unknown mechanism(s). Two oncoproteins, gankyrin and MDM2, are known to promote pRB degradation in other contexts. Consequently, we tested the hypothesis that gankyrin and/or MDM2 are required for enhanced pRB degradation in Lmna-/- fibroblasts. Principal Findings. To determine if gankyrin promotes pRB destabilization in the absence of lamin A/C, we first analyzed its protein levels in Lmna-/- fibroblasts. Both gankyrin mRNA levels and protein levels are increased in these cells, leading us to further investigate its role in pRB degradation. Consistent with prior reports, overexpression of gankyrin in Lmna+/+ cells destabilizes pRB. This decrease is functionally significant, since gankyrin overexpressing cells are resistant to p16(ink4a)-mediated cell cycle arrest. These findings suggest that lamin A-mediated degradation of pRB would be gankyrin-dependent. However, effective RNAi-enforced reduction of gankyrin expression in Lmna-/- cells was insufficient to restore pRB stability. To test the importance of MDM2, we disrupted the MDM2-pRB interaction by transfecting Lmna-/- cells with p14(arf). p14(arf) expression was also insufficient to stabilize pRB or confer cell cycle arrest, suggesting that MDM2 also does not mediate pRB degradation in Lmna-/- cells.Our findings suggest that pRB degradation in Lmna-/- cells occurs by gankyrin and MDM2-independent mechanisms, leading us to propose the existence of a third proteasome-dependent pathway for pRB degradation. Two findings from this study also increase the likelihood that lamin A/C functions as a tumor suppressor. First, protein levels of the oncoprotein gankyrin are elevated in Lmna-/- fibroblasts. Second, Lmna-/- cells are refractory to p14(arf)-mediated cell cycle arrest, as was previously shown with p16(ink4a). Potential roles of lamin A/C in the suppression of tumorigenesis are discussed

    PAX8 promotes tumor cell growth by transcriptionally regulating E2F1 and stabilizing RB protein

    Get PDF
    The retinoblastoma protein (RB)–E2F1 pathway has a central role in regulating the cell cycle. Several PAX proteins (tissue-specific developmental regulators), including PAX8, interact with the RB protein, and thus regulate the cell cycle directly or indirectly. Here, we report that PAX8 expression is frequent in renal cell carcinoma, bladder, ovarian and thyroid cancer cell lines, and that silencing of PAX8 in cancer cell lines leads to a striking reduction in the expression of E2F1 and its target genes, as well as a proteasome-dependent destabilization of RB protein, with the RB1 mRNA level remaining unaffected. Cancer cells expressing PAX8 undergo a G1/S arrest and eventually senesce following PAX8 silencing. We demonstrate that PAX8 transcriptionally regulates the E2F1 promoter directly, and E2F1 transcription is enhanced after RB depletion. RB is recruited to the PAX8-binding site, and is involved in PAX8-mediated E2F1 transcription in cancer cells. Therefore, our results suggest that, in cancer, frequent and persistent expression of PAX8 is required for cell growth control through transcriptional activation of E2F1 expression and upregulation of the RB–E2F1 pathway

    Human cytomegalovirus immediate-early 1 protein rewires upstream STAT3 to downstream STAT1 signaling switching an IL6-type to an IFNγ-like response

    Get PDF
    MN and CP were supported by the Wellcome Trust (www.wellcome.ac.uk) Institutional Strategic Support Fund and CP was supported by the Deutsche Forschungsgemeinschaft (PA 815/2-1; www.dfg.de).The human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445) in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST) or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420) deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication.Publisher PDFPeer reviewe
    corecore