884 research outputs found

    Covering theorems for Artinian rings

    Get PDF
    The covering properties of Artinian rings which depend on their additive structure only, are investigated

    On the recombination in high-order harmonic generation in molecules

    Full text link
    We show that the dependence of high-order harmonic generation (HHG) on the molecular orientation can be understood within a theoretical treatment that does not involve the strong field of the laser. The results for H_2 show excellent agreement with time-dependent strong field calculations for model molecules, and this motivates a prediction for the orientation dependence of HHG from the N_2 3s_g valence orbital. For both molecules, we find that the polarization of recombination photons is influenced by the molecular orientation. The variations are particularly pronounced for the N_2 valence orbital, which can be explained by the presence of atomic p-orbitals.Comment: 6 pages 7 figure

    Selectively excited luminescence and magnetic circular dichroism of Cr4+-doped YAG and YGG

    Get PDF
    Site selective luminescence and magnetic circular dichroism experiments on Cr4+-doped yttrium aluminum garnet and yttrium gallium garnet have been made at low temperature. The spectral assignments for these near-IR lasing materials have been made using experimental data and ligand field calculations guided by the known geometry of the lattices. [S0163-1829(99)07003-4]

    Attosecond double-slit experiment

    Get PDF
    A new scheme for a double-slit experiment in the time domain is presented. Phase-stabilized few-cycle laser pulses open one to two windows (``slits'') of attosecond duration for photoionization. Fringes in the angle-resolved energy spectrum of varying visibility depending on the degree of which-way information are observed. A situation in which one and the same electron encounters a single and a double slit at the same time is discussed. The investigation of the fringes makes possible interferometry on the attosecond time scale. The number of visible fringes, for example, indicates that the slits are extended over about 500as.Comment: 4 figure

    Nitric Oxide-Releasing Nanoparticles Prevent Propionibacterium acnes-Induced Inflammation by Both Clearing the Organism and Inhibiting Microbial Stimulation of the Innate Immune Response.

    Get PDF
    Propionibacterium acnes induction of IL-1 cytokines through the NLRP3 (NLR, nucleotide oligomerization domain-like receptor) inflammasome was recently highlighted as a dominant etiological factor for acne vulgaris. Therefore, therapeutics targeting both the stimulus and the cascade would be ideal. Nitric oxide (NO), a potent biological messenger, has documented broad-spectrum antimicrobial and immunomodulatory properties. To harness these characteristics to target acne, we used an established nanotechnology capable of generating/releasing NO over time (NO-np). P. acnes was found to be highly sensitive to all concentrations of NO-np tested, although human keratinocyte, monocyte, and embryonic zebra fish assays revealed no cytotoxicity. NO-np significantly suppressed IL-1β, tumor necrosis factor-α (TNF-α), IL-8, and IL-6 from human monocytes, and IL-8 and IL-6 from human keratinocytes, respectively. Importantly, silencing of NLRP3 expression by small interfering RNA did not limit NO-np inhibition of IL-1 β secretion from monocytes, and neither TNF-α nor IL-6 secretion, nor inhibition by NO-np was found to be dependent on this pathway. The observed mechanism by which NO-np impacts IL-1β secretion was through inhibition of caspase-1 and IL-1β gene expression. Together, these data suggest that NO-np can effectively prevent P. acnes-induced inflammation by both clearing the organism and inhibiting microbial stimulation of the innate immune response

    Farm Forestry.

    Get PDF
    17 p

    Giant half-cycle attosecond pulses

    Full text link
    Half-cycle picosecond pulses have been produced from thin photo-conductors, when applying an electric field across the surface and switching on conduction by a short laser pulse. Then the transverse current in the wafer plane emits half-cycle pulses in normal direction, and pulses of 500 fs duration and 1e6 V/m peak electric field have been observed. Here we show that single half-cycle pulses of 50 as duration and up to 1e13 V/m can be produced when irradiating a double foil target by intense few-cycle laser pulses. Focused onto an ultra-thin foil, all electrons are blown out, forming a uniform sheet of relativistic electrons. A second layer, placed at some distance behind, reflects the drive beam, but lets electrons pass straight. Under oblique incidence, beam reflection provides the transverse current, which emits intense half-cycle pulses. Such a pulse may completely ionize even heavier atoms. New types of attosecond pump-probe experiments will become possible.Comment: 5 pages, 4 figures, to be presented at LEI2011-Light at Extreme Intensities and China-Germany Symposium on Laser Acceleratio
    • …
    corecore