148 research outputs found
Vibrational (FT-IR and FT-Raman) spectra and quantum chemical studies on the molecular structure of p-hydroxy-N-(p-methoxy benzylidene) aniline
The FT-IR and FT-Raman spectra of p-hydroxy-N-(p-methoxy benzylidene) aniline have been recorded in the region 4000-400 cm−1 and 3500-100 cm−1, respectively. The optimized molecular geometry, vibrational frequencies in ground state have been calculated using density functional B3LYP methods (DFT) with 6-31+G(d,p) and 6-311++G(d,p) basis sets. The observed FT-IR and FT-Raman vibrational frequencies have been analysed and compared with theoretically predicted vibrational frequencies. The geometries and normal modes of vibration obtained from B3LYP/6-311+G(d,p) and B3LYP/6-311++G(d,p) methods are reliable compared with the experimental data. The natural bonding orbital (NBO) analysis of the investigated molecule have been computed using DFT/ B3LYP/6-311++G(d,p) calculations. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule
Structural study, NCA, FTIR, FT-Raman spectral investigations, NBO analysis and thermodynamic functions of N-benzyloxy carbonyl-L-alanine
The FTIR and FT-Raman spectra of N-benzyloxy carbonyl-L-alanine have been recorded and analyzed. Natural bond orbital analysis has been carried out for various intra-molecular interactions that are responsible for the stabilization of the molecule. HOMO-LUMO energy gap has been computed with the help of density functional theory. The statistical thermodynamic functions (heat capacity, entropy, vibrational partition function and Gibbs energy) have been obtained for the range of temperature 100-1000 K. The infrared and Raman spectra have been also predicted from the calculated intensities. Comparison of the experimental and theoretical spectra values provides important information about the ability of the computational method to describe the vibrational modes. In addition to these, Mulliken’s atomic charges associated with each atom have also been reported and mapped molecular electrostatic potential (MEP) surfaces have also been performed with the same level of DFT
Adaptive Optimized Discriminative Learning based Image Deblurring using Deep CNN
Image degradation plays a major problem in many image processing applications. Due to blurring, the quality of an image is degraded and there will be a reduction in bandwidth. Blur in an image is due to variations in atmospheric turbulence, focal length, camera settings, etc. Various types of blurs include Gaussian blur, Motion blur, Out-of-focus blur. The effect of noise along with blur further corrupts the captured image. Many techniques have evolved to deblur the degraded image. The leading approach to solve various degraded images are either based on discriminative learning models or on optimization models. Each method has its own advantages and disadvantages. Learning by discriminative methods is faster but restricted to a specific task whereas optimization models handle flexibly but consume more time. Integrating optimization models suitably by learning with discriminative manner results in effective image restoration. In this paper, a set of effective and fast Convolutional Neural Networks (CNNs) are employed to deblur the Gaussian, motion and out-of-focus blurred images that integrate with optimization models to further avoid noise effects. The proposed methods work more efficiently for applications with low-level vision
Generation of High Voltage DC using Diodes & Capacitors in Ladder Network
The project is designed& constructed to develop a high voltage DC of around 2KV from a input AC supply source of 230V using the capacitors and diodes that are constructed in the form of ladder network based on voltage multiplier concept. Generally transformers are used for stepping up of voltage in which the output of the secondary of the step up transformer increases the voltage and decreases the current. The other method for stepping up the voltage without the use of transformers is by using voltage multiplier circuit which converts AC to DC. These Voltage multipliers are primarily used to develop high voltages where low current is required. The concept of developing high voltage DC from single Phase AC is described in this project which can be enhanced up to 10KV. For safety purpose this project is restricted with a multiplication factor of 8 so that the output would be within 2KV.This concept of generation of high voltage using multiplier circuit is used in Electronic appliances such as CRT?s, oscilloscopes and in industrial applications. The principle of voltage multiplier circuit is that the voltage keeps on doubling at each stage. Thus, the output of an 8 stage voltage multiplier circuit is 2KV DC which cannot be measured by using a standard multimeter. Hence a potential divider of 10:1 is used at the output such that 200V reading means 2KV
Subclinical atherosclerosis and silent myocardial ischaemia in patients with type 2 diabetes: a protocol of a clinico-observational study
Introduction: Atherosclerotic cardiovascular disease is a significant modifiable complication in patients with diabetes and subclinical atherosclerosis is considered a surrogate marker of future vascular events. The clustering of cardiometabolic-risk factors in patients with diabetes and cardiovascular disease is increasingly being recognised. Recent evidence indicates that 20–50% of asymptomatic patients with diabetes may have silent coronary heart disease. However, the identification of subclinical atherosclerosis and silent myocardial ischaemia in patients with diabetes has been less well-explored, especially in low-resource population settings where cost-effective non-invasive clinical tools are available. The objective of this study is to identify patients with physician-diagnosed diabetes who are at risk of developing future cardiovascular events measured as subclinical atherosclerosis and silent myocardial ischaemia in an urban population of Eastern India.Methods and analysis This is a cross-sectional clinico-observational study. A convenience sampling of approximately 350 consecutive patients with type 2 diabetes based on predefined inclusion and exclusion criteria will be identified at an urban diabetes center. This estimated sample size is based on an expected prevalence of silent myocardial ischaemia of 25% (± 5%), we computed the required sample size using OpenEpi online software assuming an α level of 0.05 (95% CI) to be 289. On factoring 20% non-response the estimated sample size is 350. Previously validated questionnaire tools and well-defined clinical, anthropometric and biochemical measurements will be utilised for data collection. The two primary outcomes—subclinical atherosclerosis and silent myocardial ischaemia will be measured using carotid intima-media thickness and exercise tolerance testing, respectively. Descriptive and multivariate logistic regression statistical techniques will be employed to identify ‘at risk’ patients with diabetes, and adjusted for potential confounders. Ethics and dissemination: Ethical approval was granted by the institutional review board of Kalinga Institute of Medical Sciences, Bhubaneshwar, India. Data will be presented at academic fora and published in peer-reviewed journals
Biosynthesis of Silver nanoparticles Using Rosaceae Petal extract and analysing its antimicrobial assay
Recent developments in nanoscience and nanotechnology have brought about a fundamental shift in the way we identify, treat, and prevent numerous diseases in all aspects of human life. Silver nanoparticles (AgNPs) are among the most significant and intriguing metallic nanoparticles employed in biomedical applications. AgNPs are very important for the domains of nanomedicine, nanoscience, and nanotechnology. Although numerous noble metals have been used for a wide range of applications, AgNPs have drawn special attention because of their potential for use in cancer treatment and diagnosis. The study showed an efficient method for the successful synthesis of AgNPs using petal extract from Rosaceae plants and characterizes them using a UV spectrometer and SEM. The produced AgNPs showed notable antibacterial activity against a variety of microbes, suggesting that they could find use as an antimicrobial agent in a number of different contexts. The work offers insightful information about how AgNPs might be used as a robust antibacterial agent against a variety of microbes
Secretion of Clostridium difficile Toxins A and B Requires the Holin-like Protein TcdE
The pathogenesis of Clostridium difficile, the major cause of antibiotic-associated diarrhea, is mainly associated with the production and activities of two major toxins. In many bacteria, toxins are released into the extracellular environment via the general secretion pathways. C. difficile toxins A and B have no export signature and their secretion is not explainable by cell lysis, suggesting that they might be secreted by an unusual mechanism. The TcdE protein encoded within the C. difficile pathogenicity locus (PaLoc) has predicted structural features similar to those of bacteriophage holin proteins. During many types of phage infection, host lysis is driven by an endolysin that crosses the cytoplasmic membrane through a pore formed by holin oligomerization. We demonstrated that TcdE has a holin-like activity by functionally complementing a λ phage deprived of its holin. Similar to λ holin, TcdE expressed in Escherichia coli and C. difficile formed oligomers in the cytoplamic membrane. A C. difficile tcdE mutant strain grew at the same rate as the wild-type strain, but accumulated a dramatically reduced amount of toxin proteins in the medium. However, the complemented tcdE mutant released the toxins efficiently. There was no difference in the abundance of tcdA and tcdB transcripts or of several cytoplasmic proteins in the mutant and the wild-type strains. In addition, TcdE did not overtly affect membrane integrity of C. difficile in the presence of TcdA/TcdB. Thus, TcdE acts as a holin-like protein to facilitate the release of C. difficile toxins to the extracellular environment, but, unlike the phage holins, does not cause the non-specific release of cytosolic contents. TcdE appears to be the first example of a bacterial protein that releases toxins into the environment by a phage-like system
Anomalous Diffusion Induced by Cristae Geometry in the Inner Mitochondrial Membrane
Diffusion of inner membrane proteins is a prerequisite for correct functionality of mitochondria. The complicated structure of tubular, vesicular or flat cristae and their small connections to the inner boundary membrane impose constraints on the mobility of proteins making their diffusion a very complicated process. Therefore we investigate the molecular transport along the main mitochondrial axis using highly accurate computational methods. Diffusion is modeled on a curvilinear surface reproducing the shape of mitochondrial inner membrane (IM). Monte Carlo simulations are carried out for topologies resembling both tubular and lamellar cristae, for a range of physiologically viable crista sizes and densities. Geometrical confinement induces up to several-fold reduction in apparent mobility. IM surface curvature per se generates transient anomalous diffusion (TAD), while finite and stable values of projected diffusion coefficients are recovered in a quasi-normal regime for short- and long-time limits. In both these cases, a simple area-scaling law is found sufficient to explain limiting diffusion coefficients for permeable cristae junctions, while asymmetric reduction of the junction permeability leads to strong but predictable variations in molecular motion rate. A geometry-based model is given as an illustration for the time-dependence of diffusivity when IM has tubular topology. Implications for experimental observations of diffusion along mitochondria using methods of optical microscopy are drawn out: a non-homogenous power law is proposed as a suitable approach to TAD. The data demonstrate that if not taken into account appropriately, geometrical effects lead to significant misinterpretation of molecular mobility measurements in cellular curvilinear membranes
Genetic diversity and risk factors for the transmission of antimicrobial resistance across human, animals and environmental compartments in East Africa: a review.
BACKGROUND
The emergence and spread of antimicrobial resistance (AMR) present a challenge to disease control in East Africa. Resistance to beta-lactams, which are by far the most used antibiotics worldwide and include the penicillins, cephalosporins, monobactams and carbapenems, is reducing options for effective control of both Gram-positive and Gram-negative bacteria. The World Health Organization, Food and Agricultural Organization and the World Organization for Animal Health have all advocated surveillance of AMR using an integrated One Health approach. Regional consortia also have strengthened collaboration to address the AMR problem through surveillance, training and research in a holistic and multisectoral approach. This review paper contains collective information on risk factors for transmission, clinical relevance and diversity of resistance genes relating to extended-spectrum beta-lactamase-producing (ESBL) and carbapenemase-producing Enterobacteriaceae, and Methicillin-resistant Staphylococcus aureus (MRSA) across the human, animal and environmental compartments in East Africa.
MAIN BODY
The review of the AMR literature (years 2001 to 2019) was performed using search engines such as PubMed, Scopus, Science Direct, Google and Web of Science. The search terms included 'antimicrobial resistance and human-animal-environment', 'antimicrobial resistance, risk factors, genetic diversity, and human-animal-environment' combined with respective countries of East Africa. In general, the risk factors identified were associated with the transmission of AMR. The marked genetic diversity due to multiple sequence types among drug-resistant bacteria and their replicon plasmid types sourced from the animal, human and environment were reported. The main ESBL, MRSA and carbapenem related genes/plasmids were the CTX-Ms (45.7%), SCCmec type III (27.3%) and IMP types (23.8%), respectively.
CONCLUSION
The high diversity of the AMR genes suggests there may be multiple sources of resistance bacteria, or the possible exchange of strains or a flow of genes amongst different strains due to transfer by mobile genetic elements. Therefore, there should be harmonized One Health guidelines for the use of antibiotics, as well as regulations governing their importation and sale. Moreover, the trend of ESBLs, MRSA and carbapenem resistant (CAR) carriage rates is dynamic and are on rise over time period, posing a public health concern in East Africa. Collaborative surveillance of AMR in partnership with regional and external institutions using an integrated One Health approach is required for expert knowledge and technology transfer to facilitate information sharing for informed decision-making
- …