16,515 research outputs found

    Formation of Aluminum Particles with Shell Morphology during Pressureless Spark Plasma Sintering of Fe-Al Mixtures: Current-Related or Kirkendall Effect?

    Get PDF
    A need to deeper understand the influence of electric current on the structure and properties of metallic materials consolidated by Spark Plasma Sintering (SPS) stimulates research on inter-particle interactions, bonding and necking processes in low-pressure or pressureless conditions as favoring technique-specific local effects when electric current passes through the underdeveloped inter-particle contacts. Until now, inter-particle interactions during pressureless SPS have been studied mainly for particles of the same material. In this work, we focused on the interactions between particles of dissimilar materials in mixtures of micrometer-sized Fe and Al powders forming porous compacts during pressureless SPS at 500-650 °C. Due to the chemical interaction between Al and Fe, necks of conventional shape did not form between the dissimilar particles. At the early interaction stages, the Al particles acquired shell morphology. It was shown that this morphology change was not related to the influence of electric current but was due to the Kirkendall effect in the Fe-Al system and particle rearrangement in a porous compact. No experimental evidence of melting or melt ejection during pressureless SPS of the Fe-Al mixtures or Fe and Al powders sintered separately was observed. Porous FeAl-based compacts could be obtained from Fe-40at.%Al mixtures by pressureless SPS at 650 °C

    Parity Nonconservation in Odd-isotopes of Single Trapped Atomic Ions

    Full text link
    We have estimated the size of the light-shifts due to parity nonconservation (PNC) interactions in different isotopes of Ba+ and Ra+ ions based on the work of Fortson [Phys. Rev. Lett. 70, 2383 (1993)]. We have used the nuclear spin independent (NSI) amplitudes calculated earlier by us [Phys. Rev. Lett. 96, 163003 (2006); Phys. Rev. A 78, 050501(R) (2008)] and we have employed the third order many-body perturbation theory (MBPT(3)) in this work to estimate the nuclear spin dependent (NSD) amplitudes in these ions. Ra+ is found to be more favourable than Ba+ for measuring both the NSI and NSD PNC observables.Comment: 5 pages, 1 tabl

    Theoretical studies of the atomic transitions in boron-like ions: Mg VIII, Si X and S XII

    Get PDF
    In this paper, we have carried out the calculations of the weighted oscillator strengths and the transition probabilities for a few low-lying transitions of boron-like ions: Mg VIII, Si X and S XII which are astrophysically important, particularly, in the atmospheres of the solar corona. We have employed an all-order relativistic many-body theory called the relativistic coupled-cluster theory to calculate very precisely these atomic quantities of astrophysical interest. We have reported for the first time the transition probabilities for some forbidden transitions which are unavailable in the literature; either theoretically or experimentally. We also discuss the physical effects associated with these transitions. Our data can be used for the identification of spectral lines arising from the coronal atmospheres of Sun and Sun-like stars having an extended corona.Comment: 8 pages, 4 table

    Spectacular Role of Electron Correlation in the Hyperfine Interactions in 2D5/2^2D_{5/2} States in Alkaline Earth Ions

    Get PDF
    The low-lying n(=3,4,5)d 2D5/2^2D_{5/2} states alkaline earth ions are of vital importance in a number of different physical applications. The hyperfine structure constants of these states are characterized by unusually strong electron correlation effects. Relativistic coupled-cluster theory has been employed to carry out {\it ab initio} calculations of these constants. The role of the all order core-polarization effects was found to be decisive in obtaining good agreement of the results of our calculations with accurate measurements. The present work is an apt demonstration of the power of the coupled-cluster method to cope with strongly interacting configurations.Comment: Submitted to Physical Review Letters, 3 figures and 5 table

    Relativistic Coupled-Cluster Theory of Atomic Parity Nonconservation: Application to 137^{137}Ba+^+

    Full text link
    We report the result of our {\it ab initio} calculation of the 6s2S1/2→5d2D3/26s ^2S_{1/2} \to 5d ^2D_{3/2} parity nonconserving electric dipole transition amplitude in 137Ba+^{137}\text{Ba}^+ based on relativistic coupled-cluster theory. Considering single, double and partial triple excitations, we have achieved an accuracy of less than one percent. If the accuracy of our calculation can be matched by the proposed parity nonconservation experiment in Ba+^+ for the above transition,then the combination of the two results would provide an independent non accelerator test of the Standard Model of particle physics.Comment: 4 pages, 1 figure, Submitted to PR
    • …
    corecore