1,684 research outputs found

    Probing the indefinite CP nature of the Higgs Boson through decay distributions in the process e+ettˉΦe^+e^-\to t\bar{t}\Phi

    Full text link
    The recently discovered scalar resonance at the LHC is now almost confirmed to be a Higgs Boson, whose CP properties are yet to be established. At the ILC with and without polarized beams, it may be possible to probe these properties at high precision. In this work, we study the possibility of probing departures from the pure CP-even case, by using the decay distributions in the process e+ettˉΦe^+ e^- \to t \bar{t} \Phi, with Φ\Phi mainly decaying into a bbˉb\bar b pair. We have compared the case of a minimal extension of the SM case (Model I) with an additional pseudoscalar degree of freedom, with a more realistic case namely the CP-violating Two-Higgs Doublet Model (Model II) that permits a more general description of the couplings. We have considered the ILC with s=800\sqrt{s}=800\,GeV and integrated luminosity of 300fb1300\, {\rm fb}^{-1}. Our main findings are that even in the case of small departures from the CP-even case, the decay distributions are sensitive to the presence of a CP-odd component in Model II, while it is difficult to probe these departures in Model I unless the pseudoscalar component is very large. Noting that the proposed degrees of beam polarization increases the statistics, the process demonstrates the effective role of beam polarization in studies beyond the Standard Model. Further, our study shows that an indefinite CP Higgs would be a sensitive laboratory to physics beyond the SM.Comment: 14 pages using revtex, 10 figures, corresponds to version accepted for publication in Phys. Rev. D.; compared to v1, discussion extended, figure added, table added, section reorganize

    Realization of Resistorless Lossless Positive and Negative Grounded Inductor Simulators Using Single ZC-CCCITA

    Get PDF
    This paper is in continuation with the very recent work of Prasad et al. [14], wherein new realizations of grounded and floating positive inductor simulator using current differencing transconductance amplifier (CDTA) are reported. The focus of the paper is to provide alternate realizations of lossless, both positive and negative inductor simulators (PIS and NIS) in grounded form using z-copy current-controlled current inverting transconductance amplifier (ZC-CCCITA), which can be considered as a derivative of CDTA, wherein the current differencing unit (CDU) is reduced to a current-controlled current inverting unit. We demonstrate that only a single ZC-CCCITA and one grounded capacitor are sufficient to realize grounded lossless PIS or NIS. The proposed circuits are resistorless whose parameters can be controlled through the bias currents. The workability of the proposed PIS is validated by SPICE simulations on three RLC prototypes

    Further results on I-limit superior and limit inferior

    Get PDF
    In this paper we obtain (after the works of Demirci) some further properties of I-limit superior and I-limit inferior and obtain the I-analogue of Cauchy criterion of convergence of a sequence of real numbers

    A note on exponent of convergence of zeros of entire functions

    Get PDF

    Top Yukawa coupling measurement with indefinite CP Higgs in e+ettˉΦe^+e^-\to t\bar{t}\Phi

    Full text link
    We consider the issue of the top quark Yukawa coupling measurement in a model in dependent and general case with the inclusion of CP-violation in the coupling. Arguably the best process to study this coupling is the associa ted production of Higgs boson along with a ttˉt\bar t pair in a machine like the International Linear Collider (ILC). While detailed analyses of the sensitivity of the measurement assuming a Standard Model (SM) - like coupling are available in the context of ILC, conclude that th e coupling could be pinned down at about 10\% level with modest luminosity, our investigations show that the scenario could be different in case of a more general coupling. The modified Lorentz structure resulting in a changed functional dependence of the cross section on the couplin g, along with the difference in the cross section itself leads to considerable deviation in the sensitivity. Our studies with an ILC of center of mass energies of 500 GeV, 800 GeV and 1000 GeV show that moderate CP-mixing in the Higgs sector could change the sensitivity to about 20\ %, while it could be worsened to 75\% in cases which could accommodate more dramatic changes in the coupling. While detailed considerations of the decay distributions point to a need for a relook at the analysis strategy followed for the case of SM such as for a model independent analysis of the top quark Yukawa coupling measurement. This study strongly suggests that, a joint analysis of the CP properties and the Yukawa coupling measurement would be the way forward at the ILC and that caution must be excercised in the measurem ent of the Yukawa couplings and the conclusions drawn from it.Comment: 18 pages, 7 figures, uses revte

    Phase Transition in the ABC Model

    Full text link
    Recent studies have shown that one-dimensional driven systems can exhibit phase separation even if the dynamics is governed by local rules. The ABC model, which comprises three particle species that diffuse asymmetrically around a ring, shows anomalous coarsening into a phase separated steady state. In the limiting case in which the dynamics is symmetric and the parameter qq describing the asymmetry tends to one, no phase separation occurs and the steady state of the system is disordered. In the present work we consider the weak asymmetry regime q=exp(β/N)q=\exp{(-\beta/N)} where NN is the system size and study how the disordered state is approached. In the case of equal densities, we find that the system exhibits a second order phase transition at some nonzero βc\beta_c. The value of βc=2π3\beta_c = 2 \pi \sqrt{3} and the optimal profiles can be obtained by writing the exact large deviation functional. For nonequal densities, we write down mean field equations and analyze some of their predictions.Comment: 18 pages, 3 figure

    Defect Detection in Weld Joints by Infrared Thermography

    Get PDF
    The objective of this present paper is to evaluate the effectiveness of infrared thermography (IRT) as a non-contact, fast and reliable non-destructive evaluation procedure for detection and quantification of defects in weld joints. In the present work, a friction stir welded (FSW) joint of two aluminum plates and three 316 LN stain-less steel (SS) weld-joints with lack of penetration (LOP), lack of fusion (LOF) and tungsten inclusion (TI) defects respectively, were inspected using IRT and digital radio-graphy (DRG). Using active thermography methods, a sub-surface tunnel defect along the weld line was successfully detected in the FSW joint and its length and width were estimated by suitable pixel calibration. Using lock-in thermography, optimum frequencies were determined for each of the specimens and defect-depths were estimated. Tempe-rature fall of the defect region and defect-free region were monitored as a function of time and it was found that the rate of temperature fall in the former case is slower than that in the latter one. Results from both the tech-niques, i.e., IRT and DRG were found to be in good agree-ment with each other in all the cases. Advantage of IRT is that it provides depth information also

    Condensation Transitions in Two Species Zero-Range Process

    Full text link
    We study condensation transitions in the steady state of a zero-range process with two species of particles. The steady state is exactly soluble -- it is given by a factorised form provided the dynamics satisfy certain constraints -- and we exploit this to derive the phase diagram for a quite general choice of dynamics. This phase diagram contains a variety of new mechanisms of condensate formation, and a novel phase in which the condensate of one of the particle species is sustained by a `weak' condensate of particles of the other species. We also demonstrate how a single particle of one of the species (which plays the role of a defect particle) can induce Bose-Einstein condensation above a critical density of particles of the other species.Comment: 17 pages, 4 Postscript figure

    Phase Separation in One-Dimensional Driven Diffusive Systems

    Full text link
    A driven diffusive model of three types of particles that exhibits phase separation on a ring is introduced. The dynamics is local and comprises nearest neighbor exchanges that conserve each of the three species. For the case in which the three densities are equal, it is shown that the model obeys detailed balance. The Hamiltonian governing the steady state distribution in this case is given and is found to have long range asymmetric interactions. The partition sum and bounds on some correlation functions are calculated analytically demonstrating phase separation.Comment: 4 Pages, Revtex, 2 Figures included, Submitted to Physical Review Letter

    Singular Scaling Functions in Clustering Phenomena

    Full text link
    We study clustering in a stochastic system of particles sliding down a fluctuating surface in one and two dimensions. In steady state, the density-density correlation function is a scaling function of separation and system size.This scaling function is singular for small argument -- it exhibits a cusp singularity for particles with mutual exclusion, and a divergence for noninteracting particles. The steady state is characterized by giant fluctuations which do not damp down in the thermodynamic limit. The autocorrelation function is a singular scaling function of time and system size. The scaling properties are surprisingly similar to those for particles moving in a quenched disordered environment that results if the surface is frozen.Comment: 8 pages, 3 figures, Invited talk delivered at Statphys 23, Genova, July 200
    corecore