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Further results on /—limit superior and limit
inferior

B. K. LAHIRI* AND PRATULANANDA Dast

Abstract. In this paper we obtain (after the works of Demirci)
some further properties of I—Ilimit superior and I—limit inferior and
obtain the I—analogue of Cauchy criterion of convergence of a sequence
of real numbers.
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1. Introduction

After the work of Fast [5], the theory of statistical convergence of a real sequence has
gained much popularity among mathematicians. In this connection more informa-
tion may be obtained from the papers in the references. As a natural consequence,
statistical limit superior and limit inferior came up for considerations which was
studied extensively by Fridy and Orhan [8]. Salat et al. ([14], [9], [10]) investigated
the theory of statistical convergence with major contributions not only to this topic
but also to the extended idea of I—convergence of a real sequence where I is an
ideal of the set of positive integers.

Recently Demirci [4] introduced the definition of I—limit superior and inferior
of a real sequence and proved several basic properties. Pursuing the idea of Demirci
in this paper we obtain further results on I—limit superior and inferior including
an I—analogue of Cauchy’s general principle of convergence for a real sequence.

2. Known definitions and theorems

We recall the following definitions and theorems where X represents a set.
Definition 1 [[11], p.34 |. Let X # ¢. A class S of subsets of X is said to be
an ideal in X provided
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(i) p €S,
(ii) A,B €S imply AUB € S,
(iii)) A€ S,BC A imply BeS.

S is called a non-trivial ideal if X ¢ S.
Definition 2 [[13], p.44 ]. Let X # ¢. A nonempty class F of subsets of X
18 said to be a filter in X provided

(1) ¢ €F,
(ii) A,B e F imply ANB € F,
(iti)) A€ F, AC B imply B € F.

The following theorem gives a relation between an ideal and a filter.
Theorem 1 [10]. Let S be a non-trivial ideal in X, X # ¢. Then the class

F(S)={MCX:M=X— A for some A€ S}

is a filter on X.

We will call F(S) the filter associated with S.

Definition 3 [10]. A non-trivial ideal S in X is called admissible if {a} € S
for each a € X.

Let I be a non-trivial ideal in N, the set of all positive integers.

Definition 4 [10]. A sequence x = {x,} of real numbers is said to be I—convergent
to I € R where R is the set of all real numbers if for every e > 0, the set A(e) =
{n:|x, =1 > €} €I. In this case we write I — lim x = 1.

Note 1. If I is admissible and x ordinarily converges to b, then x is I—convergent
to b.

Definition 5 [4]. Let I be an admissible ideal in N and let x = {z,} be a real
sequence. Let

By={beR:{k:z, >b} ¢ I}

and
Ay ={aeR:{k:x, <a} ¢ I}
Then the I— limit superior of x is given by

it _ [ supBy, if By #¢
I hmsupx—{ —oo, if By = 6.

and the I— limit inferior of x is given by

- _ JinfAg, ifA;#¢
I—hmlnfac—{ . if A, =6,
Definition 6 [9]. A real sequence x = {xy} is said to be I— bounded if there is
a number B > 0 such that{k : |z)| > B} € I.
Note 2. I— boundedness implies that I — limsup and I — liminf are finite [4].
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Throughout the paper N and R stand for the set of all positive integers and
the set of all real numbers. [ is a non-trivial admissible ideal of N. Sequences are
always real sequences and the sequences {x,}, {y.} etc. will be represented shortly
by xz,y etc.

Theorem 2 [4].

1) I —limsup x =0 (finite) if and only if for arbitrary e > 0,
(i)

{k:axp>B—€ ¢l and{k:xp>0F+e}el.
1) I —liminf x = « (finite) if and only if for arbitrary e > 0,
(ii)

{kiap<a+er ¢l and{k:z,<a—e}el

Theorem 3 [4]. For any real sequence x, I —liminf x < I —limsup z.
Theorem 4 [4]. An I—bounded sequence x is I— convergent if and only if

I —limsup x = I — liminf x.

3. [ - limit superior and inferior

In this section we prove after [4] some further results on I — limsup and I — lim inf
of a sequence.
Theorem 5. If x, y are two I-bounded sequences, then

(i) I —limsup (z+y) < I —limsup z + I —limsup y.
(1) I —liminf (x +y) > I —liminf ¢ + I — liminf y.

Proof. (i) Let Iy = I — limsup z and Iy = I — limsup y. Let € > 0 be given.
Because of Note 2 both I; and [y are finite. We can also assume that B(y4y) is not
void. Now

{kraop+ye >h+latet C{krap >l +€/2} U{k:yp > 12 +€¢/2}
and by Theorem 2(i) both sets on the right-hand side belong to I. So
{kiaop+yp >l +la+ep el

If ¢ € B(y1y), then from Definition 5, {k : 2 + yx > ¢} ¢ I. We show that
c<li+la+e Ifc>11 +1s+ €, then

{k:op+yr >ct Clkiar+yr >0+ 1o+ €}

and therefore {k : x + yr > ¢} € I, a contradiction. Hence ¢ <1y 4+ I3 + €. As this
is true for all ¢ € B(,4,), it readily follows that

I —limsup (z +y) = sup Bpiy) <l + 12+ e
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Since € > 0 is arbitrary, this proves (i). The proof of (ii) is analogous. This proves
the theorem. a

Note 3. One may easily construct x and y such that strict inequality may hold
in Theorem 5.

We need the following definition for Theorem 6.

Definition 7. A sequence x is said to be I— convergent to +o0o ( or —o0) if
for every real number G >0, {k:x, <G} el (or{k:az>-G}el).

Theorem 6. If I —limsup = = [, then there exists a subsequence of x that is
I— convergent to l.

Proof. Since ¢ € I and I is admissible, we can assume that x is a non-constant
sequence having infinite number of distinct elements. We divide the proof into three
cases.

Case (i) : | = —oco. Then from definition, B, = ¢. Hence, if M > 0, then
{k:z >—-2M} € 1. Since

{k:axx>-M}C{k:zp>-2M},

we have {k: 2z > —M} €I and so I — lim 2 = —c0.

Case (ii): | = +00. Then B, = R. So for any b € R, {k : xx > b} ¢ I. Let x,,
be an arbitrary member of  and let A,,, = {k: zx > z,,, + 1}. Since ¢ € I, A,
is not void and also A,, ¢ I. We claim that there is at least one k € A,, such
that & > ny + 1. For, otherwise A,, C {1,2,..,n1,n1 + 1} which is a member of T
(since I is admissible ) and so A,,, € I, a contradiction. We call this k as ng. Thus
Tny, > Tp, + 1. Proceeding in this way we obtain a subsequence {z,,} of x with
Tny > Tn,_, + 1 for all k > 1. Since for any M > 0, {ng : x,, < M} is a finite set,
it must belong to I, because I is admissible and so I — lim z,, = +o00.

Case (iii) : —o0 <l < +o0. By Theorem 2(i) {k : x), > 1 — 1} ¢ I so that
{k:zr >1—1} # ¢. We observe that there is at least one element, say ni, in this
set for which x,, <1+ 1/2, for otherwise {k:ap >1—1} C{k:xp >1+1/2} €I
which is a contradiction. Hence we have

l—1<z, <l+1/2<1+1

Next we proceed to choose an element z,,, from x, ns > ny such that {—1/2 < x,, <
1+ 1/2. We observe first that there is at least one k > n; for which z; > 1 —1/2,
for otherwise {k : z, > 1 —1/2} C {1,2,...,n1} and so is a member of I which
contradicts (i) of Theorem 2. Hence { k : k > ny and z, >1—1/2 } = E,, (say)
# ¢. Now if k € E,,, always implies x > [+ 1/2, then

En Cc{k:iazpy>14+1/2 C{k:xp>1+1/4}.

By (i) of Theorem 2, the right-hand set belongs to I and so E,, € I. Since I is
admissible, {1,2,...,n;} € I and thus
{k:iaxp>1-1/2} C{1,2,....n1}UE,,.

So {k:x, >1—1/2} € I, a contradiction to Theorem 2.
The above analysis therefore shows that there is no > nq such that [ — 1/2 <
T, < [+1/2. Proceeding in this way we obtain a subsequence {x,, } of z, ny, > ny_1
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such that | — 1/k < z,, <1+ 1/k for each k. The subsequence {z,,} therefore
ordinarily converges to [ and is thus I— convergent to [ by Note 1. This proves the
theorem. O
Theorem 7. Ifl = I —liminf z, then there is a subsequence of x which is I—
convergent to l.
The proof is analogous to Theorem 6 and so omitted.

4. [— analogue of Cauchy’s principle of convergence

Theorem 8. A necessary and sufficient condition that x is I— convergent to a
finite real number is that corresponding to arbitrary € > 0, there is A(e) € I such
that |y, — x,| > € implies that at least one of m and n belongs to A(e).

Proof. Necessity : Suppose that = is I— convergent to a finite real number [.
Let € > 0 be given and A(e) = {k : |z — ] > ¢/2}. Then from definition A(e) € I.
The inequality |x,, — x| < |zn — | + |xm — 1| gives that if |z, — x,| > €, then at
least one of |z,, — 1| > ¢/2 and |z,, — | > ¢/2 holds so that at least one of m and n
belongs to A(e). Hence the condition is necessary.

Sufficiency : Let ¢ > 0 be given. There exists a set A(e) € I such that
|€m — x| > € implies that at least one of m and n belongs to A(e). Since A(e) #
N ( because I is non-trivial ), choose an element ng € N — A(e). Then for all
ke N— A(e), |tk — xn,| < €. Since {k : |zk| < |zn,| + €} D N — A(e), we have
{k : |zk] < |Zn,| + €} € F(I) because N — A(e) € F(I) and F(I) is the filter
associated with I. Thus {k : |xg| > |zn,| + €} € I and so {k : |xg| > |xn,| + €} €T
which shows that = is I— bounded. Therefore by Note 2 both I — limsup = and
I —liminf x are finite.

By Theorem 3 I — liminf & < I — limsup z. If possible, let I — liminf o <
I —limsup z. Then (I —limsup z) — (I —liminf z) = 7 (say) > 0. By the given
condition there is A(n/2) € I such that |z,, — x,| > n/2 implies that at least one
of m and n € A(n/2). By (i) of Theorem 2

{k:zp >1I—limsupz —n/4} ¢ I. (1)
We note that {k : z, > I — limsupxz — n/4} N (N — A(n/2)) # ¢, for otherwise
{k:xp >1—limsupx —n/4} C A(n/2) € I which contradicts (1). Therefore there
is k1 € N— A(n/2) for which z, > I —limsupz — n/4.
Again by Theorem 2 (ii)

{k:xp <I—liminfx+n/4} &1
and so, since I is admissible,

{k:azp <I—liminfoe+n/4.k#k} ¢l

Hence proceeding as before, we can choose ko € N — A(n/2), ke # k1 such that
xk, < I —liminfx + n/4. Therefore we have

|xk1 - xk2| > 77/2
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where none of k1, k2 belong to A(n/2). This contradicts the above. Hence I —lim inf
x = I —limsupx and so by Theorem 4 x is I— convergent to a finite real number.

O

Theorem 9. FEvery I— bounded sequence x has a subsequence which is I—

convergent to a finite real number.

The proof follows from Note 2 and Theorem 6.
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