MATHEMATICAL COMMUNICATIONS 8(2003), 151-156

Further results on *I*-limit superior and limit inferior

B. K. Lahiri^{*} and Pratulananda Das^{\dagger}

Abstract. In this paper we obtain (after the works of Demirci) some further properties of I-limit superior and I-limit inferior and obtain the I-analogue of Cauchy criterion of convergence of a sequence of real numbers.

Key words: *ideal, filter, I-limit superior and I-limit inferior, I-convergence, I-boundedness of a sequence*

AMS subject classifications: 40A05, 26A03

Received April 28, 2003 Accepted July 8, 2003

1. Introduction

After the work of Fast [5], the theory of statistical convergence of a real sequence has gained much popularity among mathematicians. In this connection more information may be obtained from the papers in the references. As a natural consequence, statistical limit superior and limit inferior came up for considerations which was studied extensively by Fridy and Orhan [8]. Śalát et al. ([14], [9], [10]) investigated the theory of statistical convergence with major contributions not only to this topic but also to the extended idea of I-convergence of a real sequence where I is an ideal of the set of positive integers.

Recently Demirci [4] introduced the definition of I-limit superior and inferior of a real sequence and proved several basic properties. Pursuing the idea of Demirci in this paper we obtain further results on I-limit superior and inferior including an I-analogue of Cauchy's general principle of convergence for a real sequence.

2. Known definitions and theorems

We recall the following definitions and theorems where X represents a set.

Definition 1 [[11], p.34]. Let $X \neq \phi$. A class S of subsets of X is said to be an ideal in X provided

151

^{*}B-1/146 Kalyani,West Bengal-741235, India, e-mail: ilahiri@vsnl.com

 $^{^\}dagger Department$ of Mathematics, Jadavpur University, Kolkata - 700 032, India, e-mail : <code>pratulananda@yahoo.co.in</code>

- (i) $\phi \in S$,
- (ii) $A, B \in S$ imply $A \cup B \in S$,
- (iii) $A \in S, B \subset A$ imply $B \in S$.

S is called a non-trivial ideal if $X \notin S$.

Definition 2 [[13], p.44]. Let $X \neq \phi$. A nonempty class F of subsets of X is said to be a filter in X provided

- (i) $\phi \in F$,
- (ii) $A, B \in F$ imply $A \cap B \in F$,
- (iii) $A \in F$, $A \subset B$ imply $B \in F$.

The following theorem gives a relation between an ideal and a filter. **Theorem 1** [10]. Let S be a non-trivial ideal in $X, X \neq \phi$. Then the class

$$F(S) = \{ M \subset X : M = X - A \text{ for some } A \in S \}$$

is a filter on X.

We will call F(S) the filter associated with S.

Definition 3 [10]. A non-trivial ideal S in X is called admissible if $\{\alpha\} \in S$ for each $\alpha \in X$.

Let I be a non-trivial ideal in \mathbb{N} , the set of all positive integers.

Definition 4 [10]. A sequence $x = \{x_n\}$ of real numbers is said to be *I*-convergent to $l \in \mathbb{R}$ where \mathbb{R} is the set of all real numbers if for every $\epsilon > 0$, the set $A(\epsilon) = \{n : |x_n - l| \ge \epsilon\} \in I$. In this case we write $I - \lim x = l$.

Note 1. If I is admissible and x ordinarily converges to b, then x is I-convergent to b.

Definition 5 [4]. Let I be an admissible ideal in \mathbb{N} and let $x = \{x_n\}$ be a real sequence. Let

$$B_x = \{b \in \mathbb{R} : \{k : x_k > b\} \notin I\}$$

and

$$A_x = \{ a \in \mathbb{R} : \{ k : x_k < a \} \notin I \}.$$

Then the I- limit superior of x is given by

$$I - \limsup x = \begin{cases} \sup B_x, & \text{if } B_x \neq \phi \\ -\infty, & \text{if } B_x = \phi. \end{cases}$$

and the I- limit inferior of x is given by

$$I - \liminf x = \begin{cases} \inf A_x, & \text{if } A_x \neq \phi \\ \infty, & \text{if } A_x = \phi. \end{cases}$$

Definition 6 [9]. A real sequence $x = \{x_k\}$ is said to be I-bounded if there is a number B > 0 such that $\{k : |x_k| > B\} \in I$.

Note 2. I – boundedness implies that I – lim sup and I – lim inf are finite [4].

152

Throughout the paper \mathbb{N} and \mathbb{R} stand for the set of all positive integers and the set of all real numbers. I is a non-trivial admissible ideal of \mathbb{N} . Sequences are always real sequences and the sequences $\{x_n\}, \{y_n\}$ etc. will be represented shortly by x, y etc.

Theorem 2 [4].

(i) $I - \limsup x = \beta$ (finite) if and only if for arbitrary $\epsilon > 0$,

 $\{k: x_k > \beta - \epsilon\} \notin I \text{ and } \{k: x_k > \beta + \epsilon\} \in I.$

(ii) $I - \liminf x = \alpha$ (finite) if and only if for arbitrary $\epsilon > 0$,

 $\{k: x_k < \alpha + \epsilon\} \notin I \text{ and } \{k: x_k < \alpha - \epsilon\} \in I.$

Theorem 3 [4]. For any real sequence x, $I - \liminf x \le I - \limsup x$. **Theorem 4** [4]. An I-bounded sequence x is I- convergent if and only if

 $I - \limsup x = I - \liminf x.$

3. *I* - limit superior and inferior

In this section we prove after [4] some further results on $I - \limsup$ and $I - \liminf$ of a sequence.

Theorem 5. If x, y are two I-bounded sequences, then

(i) $I - \limsup (x + y) \le I - \limsup x + I - \limsup y$.

(ii) $I - \liminf (x+y) \ge I - \liminf x + I - \liminf y$.

Proof. (i) Let $l_1 = I - \limsup x$ and $l_2 = I - \limsup y$. Let $\epsilon > 0$ be given. Because of *Note* 2 both l_1 and l_2 are finite. We can also assume that $B_{(x+y)}$ is not void. Now

$$\{k: x_k + y_k > l_1 + l_2 + \epsilon\} \subset \{k: x_k > l_1 + \epsilon/2\} \cup \{k: y_k > l_2 + \epsilon/2\}$$

and by Theorem 2(i) both sets on the right-hand side belong to I. So

$$\{k : x_k + y_k > l_1 + l_2 + \epsilon\} \in I.$$

If $c \in B_{(x+y)}$, then from *Definition 5*, $\{k : x_k + y_k > c\} \notin I$. We show that $c \leq l_1 + l_2 + \epsilon$. If $c > l_1 + l_2 + \epsilon$, then

$$\{k: x_k + y_k > c\} \subset \{k: x_k + y_k > l_1 + l_2 + \epsilon\}$$

and therefore $\{k : x_k + y_k > c\} \in I$, a contradiction. Hence $c \leq l_1 + l_2 + \epsilon$. As this is true for all $c \in B_{(x+y)}$, it readily follows that

$$I - \limsup (x+y) = \sup B_{(x+y)} \le l_1 + l_2 + \epsilon.$$

Since $\epsilon > 0$ is arbitrary, this proves (i). The proof of (ii) is analogous. This proves the theorem.

Note 3. One may easily construct x and y such that strict inequality may hold in Theorem 5.

We need the following definition for *Theorem 6*.

Definition 7. A sequence x is said to be I-convergent to $+\infty$ (or $-\infty$) if for every real number G > 0, $\{k : x_k \leq G\} \in I$ (or $\{k : x_k \geq -G\} \in I$).

Theorem 6. If $I - \limsup x = l$, then there exists a subsequence of x that is I - convergent to l.

Proof. Since $\phi \in I$ and I is admissible, we can assume that x is a non-constant sequence having infinite number of distinct elements. We divide the proof into three cases.

Case (i) : $l = -\infty$. Then from definition, $B_x = \phi$. Hence, if M > 0, then $\{k : x_k > -2M\} \in I$. Since

$$\{k : x_k \ge -M\} \subset \{k : x_k > -2M\},\$$

we have $\{k : x_k \ge -M\} \in I$ and so $I - \lim x = -\infty$.

Case (ii): $l = +\infty$. Then $B_x = \mathbb{R}$. So for any $b \in \mathbb{R}$, $\{k : x_k > b\} \notin I$. Let x_{n_1} be an arbitrary member of x and let $A_{n_1} = \{k : x_k > x_{n_1} + 1\}$. Since $\phi \in I$, A_{n_1} is not void and also $A_{n_1} \notin I$. We claim that there is at least one $k \in A_{n_1}$ such that $k > n_1 + 1$. For, otherwise $A_{n_1} \subset \{1, 2, ..., n_1, n_1 + 1\}$ which is a member of I (since I is admissible) and so $A_{n_1} \in I$, a contradiction. We call this k as n_2 . Thus $x_{n_2} > x_{n_1} + 1$. Proceeding in this way we obtain a subsequence $\{x_{n_k}\}$ of x with $x_{n_k} > x_{n_{k-1}} + 1$ for all k > 1. Since for any M > 0, $\{n_k : x_{n_k} \leq M\}$ is a finite set, it must belong to I, because I is admissible and so $I - \lim_{k \to \infty} x_{n_k} = +\infty$.

Case (iii): $-\infty < l < +\infty$. By *Theorem* 2(i) $\{k : x_k > l - 1\} \notin I$ so that $\{k : x_k > l - 1\} \neq \phi$. We observe that there is at least one element, say n_1 , in this set for which $x_{n_1} \leq l + 1/2$, for otherwise $\{k : x_k > l - 1\} \subset \{k : x_k > l + 1/2\} \in I$ which is a contradiction. Hence we have

$$l - 1 < x_{n_1} \le l + 1/2 < l + 1.$$

Next we proceed to choose an element x_{n_2} from $x, n_2 > n_1$ such that $l-1/2 < x_{n_2} < l+1/2$. We observe first that there is at least one $k > n_1$ for which $x_k > l-1/2$, for otherwise $\{k : x_k > l-1/2\} \subset \{1, 2, ..., n_1\}$ and so is a member of I which contradicts (i) of *Theorem 2*. Hence $\{k : k > n_1 \text{ and } x_k > l-1/2\} = E_{n_1}$ (say) $\neq \phi$. Now if $k \in E_{n_1}$ always implies $x_k \ge l+1/2$, then

$$E_{n_1} \subset \{k : x_k \ge l + 1/2\} \subset \{k : x_k > l + 1/4\}.$$

By (i) of *Theorem 2*, the right-hand set belongs to I and so $E_{n_1} \in I$. Since I is admissible, $\{1, 2, ..., n_1\} \in I$ and thus

$$\{k: x_k > l - 1/2\} \subset \{1, 2, ..., n_1\} \cup E_{n_1}.$$

So $\{k: x_k > l - 1/2\} \in I$, a contradiction to Theorem 2.

The above analysis therefore shows that there is $n_2 > n_1$ such that $l - 1/2 < x_{n_2} < l+1/2$. Proceeding in this way we obtain a subsequence $\{x_{n_k}\}$ of $x, n_k > n_{k-1}$

such that $l - 1/k < x_{n_k} < l + 1/k$ for each k. The subsequence $\{x_{n_k}\}$ therefore ordinarily converges to l and is thus I- convergent to l by *Note 1*. This proves the theorem.

Theorem 7. If $l = I - \liminf x$, then there is a subsequence of x which is I - convergent to l.

The proof is analogous to Theorem 6 and so omitted.

4. *I*- analogue of Cauchy's principle of convergence

Theorem 8. A necessary and sufficient condition that x is I- convergent to a finite real number is that corresponding to arbitrary $\epsilon > 0$, there is $A(\epsilon) \in I$ such that $|x_m - x_n| \ge \epsilon$ implies that at least one of m and n belongs to $A(\epsilon)$.

Proof. Necessity: Suppose that x is I- convergent to a finite real number l. Let $\epsilon > 0$ be given and $A(\epsilon) = \{k : |x_k - l| \ge \epsilon/2\}$. Then from definition $A(\epsilon) \in I$. The inequality $|x_m - x_n| \le |x_n - l| + |x_m - l|$ gives that if $|x_m - x_n| \ge \epsilon$, then at least one of $|x_m - l| \ge \epsilon/2$ and $|x_n - l| \ge \epsilon/2$ holds so that at least one of m and n belongs to $A(\epsilon)$. Hence the condition is necessary.

Sufficiency : Let $\epsilon > 0$ be given. There exists a set $A(\epsilon) \in I$ such that $|x_m - x_n| \ge \epsilon$ implies that at least one of m and n belongs to $A(\epsilon)$. Since $A(\epsilon) \ne \mathbb{N}$ (because I is non-trivial), choose an element $n_0 \in \mathbb{N} - A(\epsilon)$. Then for all $k \in \mathbb{N} - A(\epsilon)$, $|x_k - x_{n_0}| < \epsilon$. Since $\{k : |x_k| < |x_{n_0}| + \epsilon\} \supset \mathbb{N} - A(\epsilon)$, we have $\{k : |x_k| < |x_{n_0}| + \epsilon\} \in F(I)$ because $\mathbb{N} - A(\epsilon) \in F(I)$ and F(I) is the filter associated with I. Thus $\{k : |x_k| \ge |x_{n_0}| + \epsilon\} \in I$ and so $\{k : |x_k| > |x_{n_0}| + \epsilon\} \in I$ which shows that x is I- bounded. Therefore by *Note* 2 both I - lim sup x and I - lim inf x are finite.

By Theorem 3 I – lim inf $x \leq I$ – lim sup x. If possible, let I – lim inf x < I – lim sup x. Then $(I - \limsup x) - (I - \limsup x) = \eta$ (say) > 0. By the given condition there is $A(\eta/2) \in I$ such that $|x_m - x_n| \geq \eta/2$ implies that at least one of m and $n \in A(\eta/2)$. By (i) of Theorem 2

$$\{k : x_k > I - \limsup x - \eta/4\} \notin I. \tag{1}$$

We note that $\{k : x_k > I - \limsup x - \eta/4\} \cap (\mathbb{N} - A(\eta/2)) \neq \phi$, for otherwise $\{k : x_k > I - \limsup x - \eta/4\} \subset A(\eta/2) \in I$ which contradicts (1). Therefore there is $k_1 \in \mathbb{N} - A(\eta/2)$ for which $x_{k_1} > I - \limsup x - \eta/4$. Again by *Theorem 2 (ii)*

$$\{k: x_k < I - \liminf x + \eta/4\} \notin I$$

and so, since I is admissible,

$$\{k : x_k < I - \liminf x + \eta/4, k \neq k_1\} \notin I.$$

Hence proceeding as before, we can choose $k_2 \in \mathbb{N} - A(\eta/2), k_2 \neq k_1$ such that $x_{k_2} < I - \liminf x + \eta/4$. Therefore we have

$$|x_{k_1} - x_{k_2}| > \eta/2$$

where none of k_1 , k_2 belong to $A(\eta/2)$. This contradicts the above. Hence $I-\liminf x = I - \limsup x$ and so by *Theorem 4* x is I- convergent to a finite real number. \Box

Theorem 9. Every I- bounded sequence x has a subsequence which is I- convergent to a finite real number.

The proof follows from Note 2 and Theorem 6.

References

- J. CONNOR, The statistical and strong p- Cesaro convergence of sequences, Analysis 8(1988), 47 - 63.
- [2] J. CONNOR, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32(1989), 194 – 198.
- [3] J. CONNOR, On statistical limit points and the consistency of statistical convergence, J. Math. Anal. Appl. 197(1996), 389 – 392.
- [4] K. DEMIRCI, *I- limit superior and limit inferior*, Mathematical Communications 6(2001), 165 – 172.
- [5] H. FAST, Sur la convergence statistique, Colloq. Math. 2(1951), 241 244.
- [6] J. A. FRIDY, On statistical convergence, Analysis 5(1985), 301 313.
- [7] J. A. FRIDY, Statistical limit points, Proc. Amer. Math. Soc. 118(1993), 1187 - 1192.
- [8] J. A. FRIDY, C. ORHAN, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125(1997), 3625 – 3631.
- [9] P. KOSTYRKO, M. MAĆAJ, T. ŚALÁT, *I- convergence*, Real Anal. Exchange 26(2000/2001), 669 – 686.
- [10] P. KOSTYRKO, M. MAĆAJ, T. ŚALÁT, Statistical convergence and I- convergence, to appear in Real Anal. Exchange.
- [11] C. KURATOWSKI, Topologie I, PWN, Warszawa, 1958.
- [12] H. I. MILLER, A measure theoretical subsequence characterisation of statistical convergence, Trans. Amer. Math. Soc. 347(1995), 1811 – 1819.
- [13] J. NAGATA, Modern General Topology, North Holland Publ. Comp., Amsterdam - London, 1974.
- [14] T. ŚALÁT, On statistically convergent sequences of real numbers, Math. Slovaca 30(1980), 139 –150.