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Abstract. In this paper we obtain (after the works of Demirci)
some further properties of I−limit superior and I−limit inferior and
obtain the I−analogue of Cauchy criterion of convergence of a sequence
of real numbers.
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1. Introduction

After the work of Fast [5], the theory of statistical convergence of a real sequence has
gained much popularity among mathematicians. In this connection more informa-
tion may be obtained from the papers in the references. As a natural consequence,
statistical limit superior and limit inferior came up for considerations which was
studied extensively by Fridy and Orhan [8]. Śalát et al. ([14], [9], [10]) investigated
the theory of statistical convergence with major contributions not only to this topic
but also to the extended idea of I−convergence of a real sequence where I is an
ideal of the set of positive integers.

Recently Demirci [4] introduced the definition of I−limit superior and inferior
of a real sequence and proved several basic properties. Pursuing the idea of Demirci
in this paper we obtain further results on I−limit superior and inferior including
an I−analogue of Cauchy’s general principle of convergence for a real sequence.

2. Known definitions and theorems

We recall the following definitions and theorems where X represents a set.
Definition 1 [[11], p.34 ]. Let X �= φ. A class S of subsets of X is said to be

an ideal in X provided
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(i) φ ∈ S,

(ii) A, B ∈ S imply A ∪ B ∈ S,

(iii) A ∈ S,B ⊂ A imply B ∈ S.

S is called a non-trivial ideal if X /∈ S.
Definition 2 [[13], p.44 ]. Let X �= φ. A nonempty class F of subsets of X

is said to be a filter in X provided

(i) φ ∈ F ,

(ii) A, B ∈ F imply A ∩ B ∈ F ,

(iii) A ∈ F , A ⊂ B imply B ∈ F .

The following theorem gives a relation between an ideal and a filter.
Theorem 1 [10]. Let S be a non-trivial ideal in X,X �= φ. Then the class

F (S) = {M ⊂ X : M = X − A for some A ∈ S}
is a filter on X.

We will call F (S) the filter associated with S.
Definition 3 [10]. A non-trivial ideal S in X is called admissible if {α} ∈ S

for each α ∈ X.
Let I be a non-trivial ideal in N, the set of all positive integers.
Definition 4 [10]. A sequence x = {xn} of real numbers is said to be I−convergent

to l ∈ R where R is the set of all real numbers if for every ε > 0, the set A(ε) =
{n : |xn − l| ≥ ε} ∈ I. In this case we write I − lim x = l.

Note 1. If I is admissible and x ordinarily converges to b, then x is I−convergent
to b.

Definition 5 [4]. Let I be an admissible ideal in N and let x = {xn} be a real
sequence. Let

Bx = {b ∈ R : {k : xk > b} /∈ I}
and

Ax = {a ∈ R : {k : xk < a} /∈ I}.
Then the I− limit superior of x is given by

I − lim sup x =
{

sup Bx, if Bx �= φ
−∞, if Bx = φ.

and the I− limit inferior of x is given by

I − lim inf x =
{

inf Ax, if Ax �= φ
∞, if Ax = φ.

Definition 6 [9]. A real sequence x = {xk} is said to be I− bounded if there is
a number B > 0 such that{k : |xk| > B} ∈ I.

Note 2. I− boundedness implies that I − lim sup and I − lim inf are finite [4].
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Throughout the paper N and R stand for the set of all positive integers and
the set of all real numbers. I is a non-trivial admissible ideal of N. Sequences are
always real sequences and the sequences {xn}, {yn} etc. will be represented shortly
by x, y etc.

Theorem 2 [4].

(i) I − lim sup x =β (finite) if and only if for arbitrary ε > 0,

{k : xk > β − ε} /∈ I and {k : xk > β + ε} ∈ I.

(ii) I − lim inf x = α (finite) if and only if for arbitrary ε > 0,

{k : xk < α + ε} /∈ I and {k : xk < α − ε} ∈ I.

Theorem 3 [4]. For any real sequence x, I − lim inf x ≤ I − lim sup x.
Theorem 4 [4]. An I−bounded sequence x is I− convergent if and only if

I − lim sup x = I − lim inf x.

3. I - limit superior and inferior

In this section we prove after [4] some further results on I − lim sup and I − lim inf
of a sequence.

Theorem 5. If x, y are two I-bounded sequences, then

(i) I − lim sup (x + y) ≤ I − lim sup x + I − lim sup y.

(ii) I − lim inf (x + y) ≥ I − lim inf x + I − lim inf y.

Proof. (i) Let l1 = I − lim sup x and l2 = I − lim sup y. Let ε > 0 be given.
Because of Note 2 both l1 and l2 are finite. We can also assume that B(x+y) is not
void. Now

{k : xk + yk > l1 + l2 + ε} ⊂ {k : xk > l1 + ε/2} ∪ {k : yk > l2 + ε/2}

and by Theorem 2(i) both sets on the right-hand side belong to I. So

{k : xk + yk > l1 + l2 + ε} ∈ I.

If c ∈ B(x+y), then from Definition 5, {k : xk + yk > c} /∈ I. We show that
c ≤ l1 + l2 + ε. If c > l1 + l2 + ε, then

{k : xk + yk > c} ⊂ {k : xk + yk > l1 + l2 + ε}
and therefore {k : xk + yk > c} ∈ I, a contradiction. Hence c ≤ l1 + l2 + ε. As this
is true for all c ∈ B(x+y), it readily follows that

I − lim sup (x + y) = sup B(x+y) ≤ l1 + l2 + ε.
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Since ε > 0 is arbitrary, this proves (i). The proof of (ii) is analogous. This proves
the theorem. ✷

Note 3. One may easily construct x and y such that strict inequality may hold
in Theorem5.

We need the following definition for Theorem 6.
Definition 7. A sequence x is said to be I− convergent to +∞ ( or −∞) if

for every real number G > 0, {k : xk ≤ G} ∈ I ( or {k : xk ≥ −G} ∈ I ).
Theorem 6. If I − lim sup x = l, then there exists a subsequence of x that is

I− convergent to l.
Proof. Since φ ∈ I and I is admissible, we can assume that x is a non-constant

sequence having infinite number of distinct elements. We divide the proof into three
cases.
Case (i) : l = −∞. Then from definition, Bx = φ. Hence, if M > 0, then
{k : xk > −2M} ∈ I. Since

{k : xk ≥ −M} ⊂ {k : xk > −2M},

we have {k : xk ≥ −M} ∈ I and so I − lim x = −∞.
Case (ii): l = +∞. Then Bx = R. So for any b ∈ R, {k : xk > b} /∈ I. Let xn1

be an arbitrary member of x and let An1 = {k : xk > xn1 + 1}. Since φ ∈ I, An1

is not void and also An1 /∈ I. We claim that there is at least one k ∈ An1 such
that k > n1 + 1. For, otherwise An1 ⊂ {1, 2, .., n1, n1 + 1} which is a member of I
(since I is admissible ) and so An1 ∈ I, a contradiction. We call this k as n2. Thus
xn2 > xn1 + 1. Proceeding in this way we obtain a subsequence {xnk

} of x with
xnk

> xnk−1 + 1 for all k > 1. Since for any M > 0, {nk : xnk
≤ M} is a finite set,

it must belong to I, because I is admissible and so I − lim xnk
= +∞.

Case (iii) : −∞ < l < +∞. By Theorem 2(i) {k : xk > l − 1} /∈ I so that
{k : xk > l − 1} �= φ. We observe that there is at least one element, say n1, in this
set for which xn1 ≤ l + 1/2, for otherwise {k : xk > l − 1} ⊂ {k : xk > l + 1/2} ∈ I
which is a contradiction. Hence we have

l − 1 < xn1 ≤ l + 1/2 < l + 1.

Next we proceed to choose an element xn2 from x, n2 > n1 such that l−1/2 < xn2 <
l + 1/2. We observe first that there is at least one k > n1 for which xk > l − 1/2,
for otherwise {k : xk > l − 1/2} ⊂ {1, 2, ..., n1} and so is a member of I which
contradicts (i) of Theorem 2. Hence { k : k > n1 and xk > l − 1/2 } = En1 (say)
�= φ. Now if k ∈ En1 always implies xk ≥ l + 1/2, then

En1 ⊂ {k : xk ≥ l + 1/2} ⊂ {k : xk > l + 1/4}.
By (i) of Theorem 2, the right-hand set belongs to I and so En1 ∈ I. Since I is
admissible, {1, 2, ..., n1} ∈ I and thus

{k : xk > l − 1/2} ⊂ {1, 2, ..., n1} ∪ En1 .

So {k : xk > l − 1/2} ∈ I, a contradiction to Theorem 2.
The above analysis therefore shows that there is n2 > n1 such that l − 1/2 <

xn2 < l+1/2. Proceeding in this way we obtain a subsequence {xnk
} of x, nk > nk−1
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such that l − 1/k < xnk
< l + 1/k for each k. The subsequence {xnk

} therefore
ordinarily converges to l and is thus I− convergent to l by Note 1. This proves the
theorem. ✷

Theorem 7. If l = I − lim inf x, then there is a subsequence of x which is I−
convergent to l.

The proof is analogous to Theorem 6 and so omitted.

4. I− analogue of Cauchy’s principle of convergence

Theorem 8. A necessary and sufficient condition that x is I− convergent to a
finite real number is that corresponding to arbitrary ε > 0, there is A(ε) ∈ I such
that |xm − xn| ≥ ε implies that at least one of m and n belongs to A(ε).

Proof. Necessity : Suppose that x is I− convergent to a finite real number l.
Let ε > 0 be given and A(ε) = {k : |xk − l| ≥ ε/2}. Then from definition A(ε) ∈ I.
The inequality |xm − xn| ≤ |xn − l| + |xm − l| gives that if |xm − xn| ≥ ε, then at
least one of |xm − l| ≥ ε/2 and |xn − l| ≥ ε/2 holds so that at least one of m and n
belongs to A(ε). Hence the condition is necessary.

Sufficiency : Let ε > 0 be given. There exists a set A(ε) ∈ I such that
|xm − xn| ≥ ε implies that at least one of m and n belongs to A(ε). Since A(ε) �=
N ( because I is non-trivial ), choose an element n0 ∈ N − A(ε). Then for all
k ∈ N − A(ε), |xk − xn0 | < ε. Since {k : |xk| < |xn0 | + ε} ⊃ N − A(ε), we have
{k : |xk| < |xn0 | + ε} ∈ F (I) because N − A(ε) ∈ F (I) and F (I) is the filter
associated with I. Thus {k : |xk| ≥ |xn0 | + ε} ∈ I and so {k : |xk| > |xn0 | + ε} ∈ I
which shows that x is I− bounded. Therefore by Note 2 both I − lim sup x and
I − lim inf x are finite.

By Theorem 3 I − lim inf x ≤ I − lim sup x. If possible, let I − lim inf x <
I − lim sup x. Then (I − lim sup x) − (I − lim inf x) = η (say) > 0. By the given
condition there is A(η/2) ∈ I such that |xm − xn| ≥ η/2 implies that at least one
of m and n ∈ A(η/2). By (i) of Theorem 2

{k : xk > I − lim sup x − η/4} /∈ I. (1)

We note that {k : xk > I − lim sup x − η/4} ∩ (N − A(η/2)) �= φ, for otherwise
{k : xk > I − lim sup x− η/4} ⊂ A(η/2) ∈ I which contradicts (1). Therefore there
is k1 ∈ N − A(η/2) for which xk1 > I − lim sup x − η/4.
Again by Theorem 2 (ii)

{k : xk < I − lim inf x + η/4} /∈ I

and so, since I is admissible,

{k : xk < I − lim inf x + η/4, k �= k1} /∈ I.

Hence proceeding as before, we can choose k2 ∈ N − A(η/2), k2 �= k1 such that
xk2 < I − lim inf x + η/4. Therefore we have

|xk1 − xk2 | > η/2
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where none of k1, k2 belong to A(η/2). This contradicts the above. Hence I−lim inf
x = I − lim sup x and so by Theorem 4 x is I− convergent to a finite real number.
✷

Theorem 9. Every I− bounded sequence x has a subsequence which is I−
convergent to a finite real number.

The proof follows from Note 2 and Theorem 6.
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