27,492 research outputs found
Deduced Primary Structure of the β Subunit of Brain Type II Ca2+/calmodulin-dependent Protein Kinase Determined by Molecular Cloning
cDNA clones coding for the β subunit of rat brain type II Ca2+/calmodulin-dependent protein kinase were isolated and sequenced. The clones, including one containing the entire coding region, hybridize at high stringency to a single band of poly(A)+ RNA of length 4.8 kilobases. The subunit coded for by the clones was identified by in vitro transcription of the cDNA followed by translation of the resulting RNA. The DNA sequence of the clones contains a single long open reading frame (1626 nucleotides) coding for a protein of 542 amino acids with a molecular weight of 60,333, the amino-terminal half of which is homologous to several other protein kinases. Potential ATP- and calmodulin-binding domains were identified. Two independent clones contain an identical 45-nucleotide deletion, relative to the clones described above, resulting in a shorter open reading frame coding for a protein of molecular weight 58,000. This suggests that the minor, 58-kDa β' subunit of the type II Ca2+/calmodulin-dependent kinase may be synthesized on a separate message
Purification and characterization of a calmodulin-dependent protein kinase that is highly concentrated in brain
A calcium and calmodulin-dependent protein kinase has been purified from rat brain. It was monitored during the purification by its ability to phosphorylate the synaptic vesicle-associated protein, synapsin I. A 300-fold purification was sufficient to produce kinase that is 90-95% pure as determined by scans of stained sodium dodecyl sulfate-polyacrylamide gels and has a specific activity of 2.9 mumol of 32P transferred per min/mg of protein. Thus, the kinase is a relatively abundant brain enzyme, perhaps comprising as much as 0.3% of the total brain protein. The Stokes radius (95 A) and sedimentation coefficient (16.4 S) of the kinase indicate a holoenzyme molecular weight of approximately 650,000. The holoenzyme is composed of three subunits as judged by their co-migration with kinase activity during the purification steps and co-precipitation with kinase activity by a specific anti-kinase monoclonal antibody. The three subunits have molecular weights of 50,000, 58,000, and 60,000, and have been termed alpha, beta', and beta, respectively. The alpha- and beta-subunits are distinct peptides, however, beta' may have been generated from beta by proteolysis. All three of these subunits bind calmodulin in the presence of calcium and are autophosphorylated under conditions in which the kinase is active. The subunits are present in a ratio of about 3 alpha-subunits to 1 beta/beta'-subunit. We therefore postulate that the 650,000-Da holoenzyme consists of approximately 9 alpha-subunits and 3 beta/beta'-subunits. The abundance of this calmodulin-dependent protein kinase indicates that its activation is likely to be an important biochemical response to increases in calcium ion concentration in neuronal tissue
Lattice-corrected strain-induced vector potentials in graphene
The electronic implications of strain in graphene can be captured at low
energies by means of pseudovector potentials which can give rise to
pseudomagnetic fields. These strain-induced vector potentials arise from the
local perturbation to the electronic hopping amplitudes in a tight-binding
framework. Here we complete the standard description of the strain-induced
vector potential, which accounts only for the hopping perturbation, with the
explicit inclusion of the lattice deformations or, equivalently, the
deformation of the Brillouin zone. These corrections are linear in strain and
are different at each of the strained, inequivalent Dirac points, and hence are
equally necessary to identify the precise magnitude of the vector potential.
This effect can be relevant in scenarios of inhomogeneous strain profiles,
where electronic motion depends on the amount of overlap among the local Fermi
surfaces. In particular, it affects the pseudomagnetic field distribution
induced by inhomogeneous strain configurations, and can lead to new
opportunities in tailoring the optimal strain fields for certain desired
functionalities.Comment: Errata for version
Comparing primary prevention with secondary prevention to explain decreasing Coronary Heart Disease death rates in Ireland, 1985-2000.
BACKGROUND: To investigate whether primary prevention might be more favourable than secondary prevention (risk factor reduction in patients with coronary heart disease(CHD)).
METHODS: The cell-based IMPACT CHD mortality model was used to integrate data for Ireland describing CHD patient numbers, uptake of specific treatments, trends in major cardiovascular risk factors, and the mortality benefits of these specific risk factor changes in CHD patients and in healthy people without recognised CHD.
RESULTS: Between 1985 and 2000, approximately 2,530 fewer deaths were attributable to reductions in the three major risk factors in Ireland. Overall smoking prevalence declined by 14% between 1985 and 2000, resulting in about 685 fewer deaths (minimum estimate 330, maximum estimate 1,285) attributable to smoking cessation: about 275 in healthy people and 410 in known CHD patients. Population total cholesterol concentrations fell by 4.6%, resulting in approximately 1,300 (minimum estimate 1,115, maximum estimate 1,660) fewer deaths attributable to dietary changes(1,185 in healthy people and 115 in CHD patients) plus 305 fewer deaths attributable to statin treatment (45 in people without CHD and 260 in CHD patients). Mean population diastolic blood pressure fell by 7.2%, resulting in approximately 170 (minimum estimate 105, maximum estimate 300) fewer deaths attributable to secular falls in blood pressure (140 in healthy people and 30 in CHD patients), plus approximately 70 fewer deaths attributable to antihypertensive treatments in people without CHD. Of all the deaths attributable to risk factor falls, some 1,715 (68%) occurred in people without recognized CHD and 815(32%) in CHD patients.
CONCLUSION: Compared with secondary prevention, primary prevention achieved a two-fold larger reduction in CHD deaths. Future national CHD policies should therefore prioritize nationwide interventions to promote healthy diets and reduce smoking
Remote State Preparation
Quantum teleportation uses prior entanglement and forward classical
communication to transmit one instance of an unknown quantum state. Remote
state preparation (RSP) has the same goal, but the sender knows classically
what state is to be transmitted. We show that the asymptotic classical
communication cost of RSP is one bit per qubit - half that of teleportation -
and becomes even less when transmitting part of a known entangled state. We
explore the tradeoff between entanglement and classical communication required
for RSP, and discuss RSP capacities of general quantum channels.Comment: 4 pages including 1 epsf figure; v3 has an additional author and
discusses relation to work of Devetak and Berger (quant-ph/0102123); v4
improves low-entanglement protocols without back communication to perform as
well as low-entanglement protocols with back communication; v5 (journal
version) has a few small change
The Parity Bit in Quantum Cryptography
An -bit string is encoded as a sequence of non-orthogonal quantum states.
The parity bit of that -bit string is described by one of two density
matrices, and , both in a Hilbert space of
dimension . In order to derive the parity bit the receiver must
distinguish between the two density matrices, e.g., in terms of optimal mutual
information. In this paper we find the measurement which provides the optimal
mutual information about the parity bit and calculate that information. We
prove that this information decreases exponentially with the length of the
string in the case where the single bit states are almost fully overlapping. We
believe this result will be useful in proving the ultimate security of quantum
crytography in the presence of noise.Comment: 19 pages, RevTe
Security against eavesdropping in quantum cryptography
In this article we deal with the security of the BB84 quantum cryptography
protocol over noisy channels using generalized privacy amplification. For this
we estimate the fraction of bits needed to be discarded during the privacy
amplification step. This estimate is given for two scenarios, both of which
assume the eavesdropper to access each of the signals independently and take
error correction into account. One scenario does not allow a delay of the
eavesdropper's measurement of a measurement probe until he receives additional
classical information. In this scenario we achieve a sharp bound. The other
scenario allows a measurement delay, so that the general attack of an
eavesdropper on individual signals is covered. This bound is not sharp but
allows a practical implementation of the protocol.Comment: 11 pages including 3 figures, contains new results not contained in
my Phys. Rev. A pape
Two qubit copying machine for economical quantum eavesdropping
We study the mapping which occurs when a single qubit in an arbitrary state
interacts with another qubit in a given, fixed state resulting in some unitary
transformation on the two qubit system which, in effect, makes two copies of
the first qubit. The general problem of the quality of the resulting copies is
discussed using a special representation, a generalization of the usual Schmidt
decomposition, of an arbitrary two-dimensional subspace of a tensor product of
two 2-dimensional Hilbert spaces. We exhibit quantum circuits which can
reproduce the results of any two qubit copying machine of this type. A simple
stochastic generalization (using a ``classical'' random signal) of the copying
machine is also considered. These copying machines provide simple embodiments
of previously proposed optimal eavesdropping schemes for the BB84 and B92
quantum cryptography protocols.Comment: Minor changes. 26 pages RevTex including 7 PS figure
- …