377 research outputs found
On the combination of omics data for prediction of binary outcomes
Enrichment of predictive models with new biomolecular markers is an important
task in high-dimensional omic applications. Increasingly, clinical studies
include several sets of such omics markers available for each patient,
measuring different levels of biological variation. As a result, one of the
main challenges in predictive research is the integration of different sources
of omic biomarkers for the prediction of health traits. We review several
approaches for the combination of omic markers in the context of binary outcome
prediction, all based on double cross-validation and regularized regression
models. We evaluate their performance in terms of calibration and
discrimination and we compare their performance with respect to single-omic
source predictions. We illustrate the methods through the analysis of two real
datasets. On the one hand, we consider the combination of two fractions of
proteomic mass spectrometry for the calibration of a diagnostic rule for the
detection of early-stage breast cancer. On the other hand, we consider
transcriptomics and metabolomics as predictors of obesity using data from the
Dietary, Lifestyle, and Genetic determinants of Obesity and Metabolic syndrome
(DILGOM) study, a population-based cohort, from Finland
Quality management in heavy duty manufacturing industry: TQM vs. Six Sigma
‘Is TQM a management fad?’ This question has been extensively documented in the quality management literature; and will be tackled in this research though a critical literature review on the area. ‘TQM versus Six-Sigma’ debate, which has also been a fundamental challenge in this research filed, is addressed by a thematic and chronological review on the peer papers. To evaluate this challenge in practice, a primary research in heavy duty machinery production industry have been conducted using a case-study on, J C Bamford Excavators Ltd (JCB), the largest European construction machinery producer. The result highlights that TQM is a natural foundation to build up Six-Sigma upon; and not surprisingly the quality yield in a TQM approach complemented by Six-sigma is far higher and more stable than when TQM with no Six-Sigma focus is being put in place; thus presenting the overall finding that TQM and Six Sigma are compliments, not substitutes. The study will be concluded with an overview on quality management approaches in the heavy duty manufacturing industry to highlight the way forward for the industry
Do we (seem to) perceive passage?
I examine some recent claims put forward by L. A. Paul, Barry Dainton and Simon Prosser, to the effect that perceptual experiences of movement and change involve an (apparent) experience of ‘passage’, in the sense at issue in debates about the metaphysics of time. Paul, Dainton and Prosser all argue that this supposed feature of perceptual experience – call it a phenomenology of passage – is illusory, thereby defending the view that there is no such a thing as passage, conceived of as a feature of mind-independent reality. I suggest that in fact there is no such phenomenology of passage in the first place. There is, however, a specific structural aspect of the phenomenology of perceptual experiences of movement and change that can explain how one might mistakenly come to the belief that such experiences do involve a phenomenology of passage
Madness decolonized?: Madness as transnational identity in Gail Hornstein’s Agnes’s Jacket
The US psychologist Gail Hornstein’s monograph Agnes’s Jacket: A Psychologist’s Search for the Meanings of Madness (2009) is an important intervention in the identity politics of the mad movement. Hornstein offers a resignified vision of mad identity that embroiders the central trope of an “anti-colonial” struggle to reclaim the experiential world “colonized” by psychiatry. A series of literal and figurative appeals make recourse to the inner world and (corresponding) cultural world of the mad, as well as to the ethno-symbolic cultural materials of dormant nationhood. This rhetoric is augmented by a model in which the mad comprise a diaspora without an origin, coalescing into a single transnational community. The mad are also depicted as persons displaced from their metaphorical homeland, the “inner” world “colonized” by the psychiatric regime. There are a number of difficulties with Hornstein’s rhetoric, however. Her “ethnicity-and-rights” response to the oppression of the mad is symptomatic of Western parochialism, while her proposed transmutation of putative psychopathology from limit upon identity to parameter of successful identity is open to contestation. Moreover, unless one accepts Hornstein’s porous vision of mad identity, her self-ascribed insider status in relation to the mad community may present a problematic “re-colonization” of mad experience
Towards causal benchmarking of bias in face analysis algorithms
Measuring algorithmic bias is crucial both to assess algorithmic fairness, and to guide the improvement of algorithms. Current methods to measure algorithmic bias in computer vision, which are based on observational datasets, are inadequate for this task because they conflate algorithmic bias with dataset bias.
To address this problem we develop an experimental method for measuring algorithmic bias of face analysis algorithms, which manipulates directly the attributes of interest, e.g., gender and skin tone, in order to reveal causal links between attribute variation and performance change. Our proposed method is based on generating synthetic ``transects'' of matched sample images that are designed to differ along specific attributes while leaving other attributes constant. A crucial aspect of our approach is relying on the perception of human observers, both to guide manipulations, and to measure algorithmic bias.
Besides allowing the measurement of algorithmic bias, synthetic transects have other advantages with respect to observational datasets: they sample attributes more evenly allowing for more straightforward bias analysis on minority and intersectional groups, they enable prediction of bias in new scenarios, they greatly reduce ethical and legal challenges, and they are economical and fast to obtain, helping make bias testing affordable and widely available.
We validate our method by comparing it to a study that employs the traditional observational method for analyzing bias in gender classification algorithms. The two methods reach different conclusions. While the observational method reports gender and skin color biases, the experimental method reveals biases due to gender, hair length, age, and facial hair
The geography of recent genetic ancestry across Europe
The recent genealogical history of human populations is a complex mosaic
formed by individual migration, large-scale population movements, and other
demographic events. Population genomics datasets can provide a window into this
recent history, as rare traces of recent shared genetic ancestry are detectable
due to long segments of shared genomic material. We make use of genomic data
for 2,257 Europeans (the POPRES dataset) to conduct one of the first surveys of
recent genealogical ancestry over the past three thousand years at a
continental scale. We detected 1.9 million shared genomic segments, and used
the lengths of these to infer the distribution of shared ancestors across time
and geography. We find that a pair of modern Europeans living in neighboring
populations share around 10-50 genetic common ancestors from the last 1500
years, and upwards of 500 genetic ancestors from the previous 1000 years. These
numbers drop off exponentially with geographic distance, but since genetic
ancestry is rare, individuals from opposite ends of Europe are still expected
to share millions of common genealogical ancestors over the last 1000 years.
There is substantial regional variation in the number of shared genetic
ancestors: especially high numbers of common ancestors between many eastern
populations likely date to the Slavic and/or Hunnic expansions, while much
lower levels of common ancestry in the Italian and Iberian peninsulas may
indicate weaker demographic effects of Germanic expansions into these areas
and/or more stably structured populations. Recent shared ancestry in modern
Europeans is ubiquitous, and clearly shows the impact of both small-scale
migration and large historical events. Population genomic datasets have
considerable power to uncover recent demographic history, and will allow a much
fuller picture of the close genealogical kinship of individuals across the
world.Comment: Full size figures available from
http://www.eve.ucdavis.edu/~plralph/research.html; or html version at
http://ralphlab.usc.edu/ibd/ibd-paper/ibd-writeup.xhtm
Recommended from our members
The use of the Kalman filter in the automated segmentation of EIT lung images
In this paper, we present a new pipeline for the fast and accurate segmentation of impedance images of the lungs using electrical impedance tomography (EIT). EIT is an emerging, promising, non-invasive imaging modality that produces real-time, low spatial but high temporal resolution images of impedance inside a body. Recovering impedance itself constitutes a nonlinear ill-posed inverse problem, therefore the problem is usually linearized, which produces impedance-change images, rather than static impedance ones. Such images are highly blurry and fuzzy along object boundaries. We provide a mathematical reasoning behind the high suitability of the Kalman filter when it comes to segmenting and tracking conductivity changes in EIT lung images. Next, we use a two-fold approach to tackle the segmentation problem. First, we construct a global lung shape to restrict the search region of the Kalman filter. Next, we proceed with augmenting the Kalman filter by incorporating an adaptive foreground detection system to provide the boundary contours for the Kalman filter to carry out the tracking of the conductivity changes as the lungs undergo deformation in a respiratory cycle. The proposed method has been validated by using performance statistics such as misclassified area, and false positive rate, and compared to previous approaches. The results show that the proposed automated method can be a fast and reliable segmentation tool for EIT imaging
- …