50 research outputs found

    Phenotypic Variation and Bistable Switching in Bacteria

    Get PDF
    Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated

    Optimal Strategy for Competence Differentiation in Bacteria

    Get PDF
    A phylogenetically diverse subset of bacterial species are naturally competent for transformation by DNA. Transformation entails recombination of genes between different lineages, representing a form of bacterial sex that increases standing genetic variation. We first assess whether homologous recombination by transformation is favored by evolution. Using stochastic population genetic computer simulations in which beneficial and deleterious mutations occur at many loci throughout the whole genome, we find that transformation can increase both the rate of adaptive evolution and the equilibrium level of fitness. Secondly, motivated by experimental observations of Bacillus subtilis, we assume that competence additionally entails a weak persister phenotype, i.e., the rates of birth and death are reduced for these cells. Consequently, persisters evolve more slowly than non-persisters. We show via simulation that strains which stochastically switch into and out of the competent phenotype are evolutionarily favored over strains that express only a single phenotype. Our model's simplicity enables us to derive and numerically solve a system of finite- deterministic equations that describe the evolutionary dynamics. The observed tradeoff between the benefit of recombination and the cost of persistence may explain the previously mysterious observation that only a fractional subpopulation of B. subtilis cells express competence. More generally, this work demonstrates that population genetic forces can give rise to phenotypic diversity even in an unchanging and homogeneous environment

    The Replicase Gene of Avian Coronavirus Infectious Bronchitis Virus Is a Determinant of Pathogenicity

    Get PDF
    We have previously demonstrated that the replacement of the S gene from an avirulent strain (Beaudette) of infectious bronchitis virus (IBV) with an S gene from a virulent strain (M41) resulted in a recombinant virus (BeauR-M41(S)) with the in vitro cell tropism of the virulent virus but that was still avirulent. In order to investigate whether any of the other structural or accessory genes played a role in pathogenicity we have now replaced these from the Beaudette strain with those from M41. The recombinant IBV was in effect a chimaeric virus with the replicase gene derived from Beaudette and the rest of the genome from M41. This demonstrated that it is possible to exchange a large region of the IBV genome, approximately 8.4 kb, using our transient dominant selection method. Recovery of a viable recombinant IBV also demonstrated that it is possible to interchange a complete replicase gene as we had in effect replaced the M41 replicase gene with the Beaudette derived gene. Analysis of the chimaeric virus showed that it was avirulent indicating that none of the structural or accessory genes derived from a virulent isolate of IBV were able to restore virulence and that therefore, the loss of virulence associated with the Beaudette strain resides in the replicase gene

    Coronavirus Gene 7 Counteracts Host Defenses and Modulates Virus Virulence

    Get PDF
    Transmissible gastroenteritis virus (TGEV) genome contains three accessory genes: 3a, 3b and 7. Gene 7 is only present in members of coronavirus genus a1, and encodes a hydrophobic protein of 78 aa. To study gene 7 function, a recombinant TGEV virus lacking gene 7 was engineered (rTGEV-Δ7). Both the mutant and the parental (rTGEV-wt) viruses showed the same growth and viral RNA accumulation kinetics in tissue cultures. Nevertheless, cells infected with rTGEV-Δ7 virus showed an increased cytopathic effect caused by an enhanced apoptosis mediated by caspase activation. Macromolecular synthesis analysis showed that rTGEV-Δ7 virus infection led to host translational shut-off and increased cellular RNA degradation compared with rTGEV-wt infection. An increase of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation and an enhanced nuclease, most likely RNase L, activity were observed in rTGEV-Δ7 virus infected cells. These results suggested that the removal of gene 7 promoted an intensified dsRNA-activated host antiviral response. In protein 7 a conserved sequence motif that potentially mediates binding to protein phosphatase 1 catalytic subunit (PP1c), a key regulator of the cell antiviral defenses, was identified. We postulated that TGEV protein 7 may counteract host antiviral response by its association with PP1c. In fact, pull-down assays demonstrated the interaction between TGEV protein 7, but not a protein 7 mutant lacking PP1c binding motif, with PP1. Moreover, the interaction between protein 7 and PP1 was required, during the infection, for eIF2α dephosphorylation and inhibition of cell RNA degradation. Inoculation of newborn piglets with rTGEV-Δ7 and rTGEV-wt viruses showed that rTGEV-Δ7 virus presented accelerated growth kinetics and pathology compared with the parental virus. Overall, the results indicated that gene 7 counteracted host cell defenses, and modified TGEV persistence increasing TGEV survival. Therefore, the acquisition of gene 7 by the TGEV genome most likely has provided a selective advantage to the virus

    The C terminus of the AddA subunit of the Bacillus subtilis ATP-dependent DNase is required for the ATP-dependent exonuclease activity but not for the helicase activity.

    No full text
    Comparison of subunit AddA of the Bacillus subtilis AddAB enzyme, subunit RecB of the Escherichia coli RecBCD enzyme, and subunit RecB of the Haemophilus influenzae RecBCD enzyme revealed several regions of homology. Whereas the first seven regions are common among helicases, the two C-terminally located regions are unique for RecB of E. coli and H. influenzae and AddA. Deletion of the C-terminal region resulted in the production of an enzyme which showed moderately impaired levels of ATP-dependent helicase activity, whereas the ATP-dependent exonuclease activity was completely destroyed. The mutant enzyme was almost completely capable of complementing E. coli recBCD and B. subtilis addAB strains with respect to DNA repair and homologous recombination. These results strongly suggest that at least part of the C-terminal region of the AddA protein is indispensable for exonuclease activity and that, in contrast to the exonuclease activity, the helicase activity of the addAB gene product is important for DNA repair and homologous recombination

    Effects of lysine-to-glycine mutations in the ATP-binding consensus sequences in the AddA and AddB subunits on the Bacillus subtilis AddAB enzyme activities.

    No full text
    The N-terminal regions of both subunits AddA and AddB of the Bacillus subtilis AddAB enzyme contain amino acid sequences, designated motif I, which are commonly found in ATP-binding enzymes. The functional significance of the motif I regions was studied by replacing the highly conserved lysine residues of the regions in both subunits by glycines and by examination of the resulting mutant enzymes with respect to their enzymatic properties. This study shows that the mutation in subunit AddB hardly affected the ATPase, helicase, and exonuclease activities of the AddAB enzyme. However, the mutation in subunit AddA drastically reduced these activities, as well as the kcat for ATP hydrolysis. The apparent Km for ATP in ATP hydrolysis did not significantly deviate from that of the wild-type enzyme. These results suggest that the lysine residue in motif I of subunit AddA of the AddAB enzyme is not essential for the binding of the nucleotide but has a role in ATP hydrolysis, which is required for the exonuclease and helicase activities of the enzyme

    A conserved helicase motif of the AddA subunit of the Bacillus subtilis ATP-dependent nuclease (AddAB) is essential for DNA repair and recombination

    No full text
    Various mutations were introduced in a conserved helicase domain (motif VI) of the AddA subunit of the Bacillus subtilis ATP-dependent nuclease (AddAB) by site-directed mutagenesis. These mutations affected the helicase activity and the ATP-dependent exonuclease activity on double-stranded DNA (dsDNA) as the substrate to various degrees, but had hardly any effect on the exonuclease activity on single-stranded DNA (ssDNA), suggesting that exonuclease activity on dsDNA of the enzyme requires unwinding of the DNA. This idea was supported by the finding that, initially, the rate and extent of unwinding of the DNA were higher than those of its degradation to acid-soluble products by the exonucleolytic activity. The effects of the mutations on DNA repair and recombination correlated strongly with their effects on helicase activity. Taken together, these results suggest that motif VI is essential for the helicase activity, and that this activity is required for DNA repair and recombination

    Role of enzymes of homologous recombination in illegitimate plasmid recombination in Bacillus subtilis.

    No full text
    The structural stability of plasmid pGP1, which encodes a fusion between the penicillinase gene (penP) of Bacillus licheniformis and the Escherichia coli lacZ gene, was investigated in Bacillus subtilis strains expressing mutated subunits of the ATP-dependent nuclease, AddAB, and strains lacking the major recombination enzyme, RecA. Strains carrying a mutation in the ATP-binding site of the AddB subunit exhibited high levels of plasmid instability, whereas a comparable mutation in the A subunit did not affect plasmid stability. Using an alternative plasmid system, pGP100, we were able to demonstrate that the differences in stability reflected differences in initial recombination frequencies. Based on a comparison of endpoint sequences observed in the various hosts, we speculate that at least two different mechanisms underlie the deletion events involved, the first (type I) occurring between nonrepeated sequences, and the second (type II) occurring between short direct repeats (DRs). The latter event was independent of single-strand replication intermediates and the mode of replication and possibly requires the introduction of double-strand breaks (DSBs) between the repeats. In the absence of functional AddAB complex, or the AddB subunit, DSBs are likely to be processed via a recA-independent mechanism, resulting in intramolecular recombination between the DRs. In wild-type cells, such DSBs are supposed to be either repaired by a mechanism involving AddAB-dependent recombination or degraded by the AddAB-associated exonuclease activity. Plasmid stability assays in a recA mutant showed that (i) the level of deletion formation was considerably higher in this host and (ii) that deletions between short DRs occurred at higher frequencies than those described previously for the parental strain. We propose that in wild-type cells, the recA gene product is involved in recombinational repair of DSBs
    corecore