1,405 research outputs found
Moving Walkways, Escalators, and Elevators
We study a simple geometric model of transportation facility that consists of
two points between which the travel speed is high. This elementary definition
can model shuttle services, tunnels, bridges, teleportation devices, escalators
or moving walkways. The travel time between a pair of points is defined as a
time distance, in such a way that a customer uses the transportation facility
only if it is helpful.
We give algorithms for finding the optimal location of such a transportation
facility, where optimality is defined with respect to the maximum travel time
between two points in a given set.Comment: 16 pages. Presented at XII Encuentros de Geometria Computacional,
Valladolid, Spai
Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data
peer reviewe
Cannibalism as a life boat mechanism
Under certain conditions a cannibalistic population can survive when food for the adults is too scarce to support a non-cannibalistic population. Cannibalism can have this lifeboat effect if (i) the juveniles feed on a resource inaccessible to the adults; and (ii) the adults are cannibalistic and thus incorporate indirectly the inaccessible resource. Using a simple model we conclude that the mechanism works when, at low population densities, the average yield, in terms of new offspring, due to the energy provided by one cannibalized juvenile is larger than one
Accelerometer and Survey Assessed Physical Activity in Children With Epilepsy: A Case-Controlled Study
Purpose: Anecdotal evidence suggests that children with epilepsy (CWE) are limited in the frequency of their daily physical activity (PA). However, there is limited research utilizing device-based measures of PA. We compared levels of PA and sedentary behavior in CWE (11–15 y) and age- and gender-matched healthy controls. Method: Participants (n = 60 CWE [25 males, 35 females] and n = 49 controls [25 males, 24 females]) wore a Actigraph accelerometer (GT3X or GT3X+) for 7 consecutive days during waking hours and self-reported their PA and sedentary behaviors. CWE were compared with control children on time spent in different intensities of PA and on self-reported PA and sedentary behavior. Factors associated with PA were analyzed using linear regression. Results: CWE spent less time in accelerometer assessed light (189.15 vs 215.01 min/d, P < .05) and vigorous PA (35.14 vs 44.28 min/d, P < .05) on weekdays compared with controls. There were no significant differences between CWE and control participants in accelerometer assessed time spent sedentary or time spent in PA on weekends. Among CWE, older children engaged in more reported sedentary behavior and younger children spent more time in most domains of PA (P < .05). Furthermore, CWE reported less PA than controls (P = .006). Sixteen percent of controls met World Health Organization PA guidelines compared with 10% of CWE. There was a positive relationship between accelerometer assessed PA and quality of life for CWE. Conclusion: CWE spent less time in light and moderate to vigorous PA on weekdays. Further research is needed to understand reasons for these differences
Statistical mechanics of Beltrami flows in axisymmetric geometry: Equilibria and bifurcations
We characterize the thermodynamical equilibrium states of axisymmetric
Euler-Beltrami flows. They have the form of coherent structures presenting one
or several cells. We find the relevant control parameters and derive the
corresponding equations of state. We prove the coexistence of several
equilibrium states for a given value of the control parameter like in 2D
turbulence [Chavanis and Sommeria, J. Fluid Mech. 314, 267 (1996)]. We explore
the stability of these equilibrium states and show that all states are saddle
points of entropy and can, in principle, be destabilized by a perturbation with
a larger wavenumber, resulting in a structure at the smallest available scale.
This mechanism is therefore reminiscent of the 3D Richardson energy cascade
towards smaller and smaller scales. Therefore, our system is truly intermediate
between 2D turbulence (coherent structures) and 3D turbulence (energy cascade).
We further explore numerically the robustness of the equilibrium states with
respect to random perturbations using a relaxation algorithm in both canonical
and microcanonical ensembles. We show that saddle points of entropy can be very
robust and therefore play a role in the dynamics. We evidence differences in
the robustness of the solutions in the canonical and microcanonical ensembles.
A scenario of bifurcation between two different equilibria (with one or two
cells) is proposed and discussed in connection with a recent observation of a
turbulent bifurcation in a von Karman experiment [Ravelet et al., Phys. Rev.
Lett. 93, 164501 (2004)].Comment: 25 pages; 16 figure
Study of the Stabilization to the Nanometer Level of Mechanical Vibrations of the CLIC Main Beam
Original publication available at http://www.jacow.org/International audienceTo reach the design luminosity of CLIC, the movements of the quadrupoles should be limited to the nanometre level in order to limit the beam size and emittance growth. Below 1 Hz, the movements of the main beam quadrupoles will be corrected by a beambased feedback. But above 1 Hz, the quadrupoles should be mechanically stabilized. A collaboration effort is ongoing between several institutes to study the feasibility of the "nanostabilization" of the CLIC quadrupoles. The study described in this paper covers the characterization of independent measuring techniques including optical methods to detect nanometre sized displacements and analyze the vibrations. Actuators and feedback algorithms for sub-nanometre movements of magnets with a mass of more than 400 kg are being developed and tested. Input is given to the design of the quadrupole magnets, the supports and alignment system in order to limit the amplification of the vibration sources at resonant frequencies. A full scale mock-up integrating all these features is presently under design. Finally, a series of experiments in accelerator environments should demonstrate the feasibility of the nanometre stabilization
Recommended from our members
Analysis of irradiated U-7wt%Mo dispersion fuel microstructures using automated image processing
The High Performance Research Reactor Fuel Development (HPPRFD) program is responsible for developing low enriched uranium (LEU) fuel substitutes for high performance reactors fueled with highly enriched uranium (HEU) that have not yet been converted to LEU. The uranium-molybdenum (U-Mo) fuel system was selected for this effort. In this study, fission gas pore segmentation was performed on U-7wt%Mo dispersion fuel samples at three separate fission densities using an automated image processing interface developed in MATLAB. Pore size distributions were attained that showed both expected and unexpected fission gas behavior. In general, it proved challenging to identify any dominant trends when comparing fission bubble data across samples from different fuel plates due to varying compositions and fabrication techniques. The results exhibited fair agreement with the fission density vs. porosity correlation developed by the Russian reactor conversion program.Keywords: Automated image analysis, Fission bubbles, Porosity, Nuclear fuel, MATLAB, Fission densit
Reliability of two goniometric methods of measuring active inversion and eversion range of motion at the ankle
BACKGROUND: Active inversion and eversion ankle range of motion (ROM) is widely used to evaluate treatment effect, however the error associated with the available measurement protocols is unknown. This study aimed to establish the reliability of goniometry as used in clinical practice. METHODS: 30 subjects (60 ankles) with a wide variety of ankle conditions participated in this study. Three observers, with different skill levels, measured active inversion and eversion ankle ROM three times on each of two days. Measurements were performed with subjects positioned (a) sitting and (b) prone. Intra-class correlation coefficients (ICC([2,1])) were calculated to determine intra- and inter-observer reliability. RESULTS: Within session intra-observer reliability ranged from ICC([2,1] )0.82 to 0.96 and between session intra-observer reliability ranged from ICC([2,1] )0.42 to 0.80. Reliability was similar for the sitting and the prone positions, however, between sessions, inversion measurements were more reliable than eversion measurements. Within session inter-observer measurements in sitting were more reliable than in prone and inversion measurements were more reliable than eversion measurements. CONCLUSION: Our findings show that ankle inversion and eversion ROM can be measured with high to very high reliability by the same observer within sessions and with low to moderate reliability by different observers within a session. The reliability of measures made by the same observer between sessions varies depending on the direction, being low to moderate for eversion measurements and moderate to high for inversion measurements in both positions
- …