1,978 research outputs found

    Birth, life and death of a cyclonic eddy in the Southern Ocean

    Get PDF
    The ACC is a climatically relevant frontal structure of global importance that regularly develops instabilities which grow into meanders that eventually evolve into long-lived cyclonic eddies. These eddies exhibit sustain primary productivity that can last several months fuelled by local resupply of nutrients. During April-May 2015 we conducted an intensive field experiment in the Southern Ocean (SMILES) where we sampled and tracked an ACC meander as it developed into an eddy and later vanished some 90 days later. The meander and later eddy physical characteristics were observed with a combination of high resolution hydrography, ADCP and turbulence observations in addition to surface and depth resolved biogeochemical observations of nutrients and phytoplankton. The life and death of the eddy was subsequently tracked through ARGO, BIO-ARGO and remote sensing

    Magnetism, X-rays, and Accretion Rates in WD 1145+017 and other Polluted White Dwarf Systems

    Full text link
    This paper reports circular spectropolarimetry and X-ray observations of several polluted white dwarfs including WD 1145+017, with the aim to constrain the behavior of disk material and instantaneous accretion rates in these evolved planetary systems. Two stars with previously observed Zeeman splitting, WD 0322-019 and WD 2105-820, are detected above 5 sigma and > 1 kG, while WD 1145+017, WD 1929+011, and WD 2326+049 yield (null) detections below this minimum level of confidence. For these latter three stars, high-resolution spectra and atmospheric modeling are used to obtain limits on magnetic field strengths via the absence of Zeeman splitting, finding B* < 20 kG based on data with resolving power R near 40 000. An analytical framework is presented for bulk Earth composition material falling onto the magnetic polar regions of white dwarfs, where X-rays and cyclotron radiation may contribute to accretion luminosity. This analysis is applied to X-ray data for WD 1145+017, WD 1729+371, and WD 2326+049, and the upper bound count rates are modeled with spectra for a range of plasma kT = 1 - 10 keV in both the magnetic and non-magnetic accretion regimes. The results for all three stars are consistent with a typical dusty white dwarf in a steady-state at 1e8 - 1e9 g/s. In particular, the non-magnetic limits for WD 1145+017 are found to be well below previous estimates of up to 1e12 g/s, and likely below 1e10 g/s, thus suggesting the star-disk system may be average in its evolutionary state, and only special in viewing geometry.Comment: 14 pages, 7 figures, 3 tables; accepted to MNRA

    Using Electronic Drug Monitor Feedback to Improve Adherence to Antiretroviral Therapy Among HIV-Positive Patients in China

    Get PDF
    Effective antiretroviral therapy (ART) requires excellent adherence. Little is known about how to improve ART adherence in many HIV/AIDS-affected countries, including China. We therefore assessed an adherence intervention among HIV-positive patients in southwestern China. Eighty subjects were enrolled and monitored for 6 months. Sixty-eight remaining subjects were randomized to intervention/control arms. In months 7–12, intervention subjects were counseled using EDM feedback; controls continued with standard of care. Among randomized subjects, mean adherence and CD4 count were 86.8 vs. 83.8% and 297 vs. 357 cells/μl in intervention vs. control subjects, respectively. At month 12, among 64 subjects who completed the trial, mean adherence had risen significantly among intervention subjects to 96.5% but remained unchanged in controls. Mean CD4 count rose by 90 cells/μl and declined by 9 cells/μl among intervention and control subjects, respectively. EDM feedback as a counseling tool appears promising for management of HIV and other chronic diseases.Boston University and the Office of Health and Nutrition of the United States Agency for International Development (GHS-A-00-03-00030-00); World Health Organization; United States Centers for Disease Control; National Institutes of Health, National Institute of Allergy and Infectious Diseases (K23 AI 62208); Mid-Career Mentoring Award (K24 RR020300

    How social role transitions from adolescence to adulthood relate to trajectories of well-being and substance use

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/137870/1/occ56.pd

    The combined effects of reactant kinetics and enzyme stability explain the temperature dependence of metabolic rates

    Get PDF
    A mechanistic understanding of the response of metabolic rate to temperature is essential for understanding thermal ecology and metabolic adaptation. Although the Arrhenius equation has been used to describe the effects of temperature on reaction rates and metabolic traits, it does not adequately describe two aspects of the thermal performance curve (TPC) for metabolic rate—that metabolic rate is a unimodal function of temperature often with maximal values in the biologically relevant temperature range and that activation energies are temperature dependent. We show that the temperature dependence of metabolic rate in ectotherms is well described by an enzyme-assisted Arrhenius (EAAR) model that accounts for the temperature-dependent contribution of enzymes to decreasing the activation energy required for reactions to occur. The model is mechanistically derived using the thermodynamic rules that govern protein stability. We contrast our model with other unimodal functions that also can be used to describe the temperature dependence of metabolic rate to show how the EAAR model provides an important advance over previous work. We fit the EAAR model to metabolic rate data for a variety of taxa to demonstrate the model’s utility in describing metabolic rate TPCs while revealing significant differences in thermodynamic properties across species and acclimation temperatures. Our model advances our ability to understand the metabolic and ecological consequences of increases in the mean and variance of temperature associated with global climate change. In addition, the model suggests avenues by which organisms can acclimate and adapt to changing thermal environments. Furthermore, the parameters in the EAAR model generate links between organismal level performance and underlying molecular processes that can be tested for in future work

    Progress in Interferometry for LISA at JPL

    Full text link
    Recent advances at JPL in experimentation and design for LISA interferometry include the demonstration of Time Delay Interferometry using electronically separated end stations, a new arm-locking design with improved gain and stability, and progress in flight readiness of digital and analog electronics for phase measurements.Comment: 11 pages, 9 figures, LISA 8 Symposium, Stanford University, 201

    Spin Echo Decay in a Stochastic Field Environment

    Full text link
    We derive a general formalism with which it is possible to obtain the time dependence of the echo size for a spin in a stochastic field environment. Our model is based on ``strong collisions''. We examine in detail three cases where: (I) the local field is Ising-like, (II) the field distribution is continuous and has a finite second moment, and (III) the distribution is Lorentzian. The first two cases show a T2 minimum effect and are exponential in time cubed for short times. The last case can be approximated by a phenomenological stretched exponential.Comment: 11 pages + 3 postscript figure
    corecore