6,662 research outputs found
Quasi-normal modes of Schwarzschild-de Sitter black holes
The low-laying frequencies of characteristic quasi-normal modes (QNM) of
Schwarzschild-de Sitter (SdS) black holes have been calculated for fields of
different spin using the 6th-order WKB approximation and the approximation by
the P\"{o}shl-Teller potential. The well-known asymptotic formula for large
is generalized here on a case of the Schwarzchild-de Sitter black hole. In the
limit of the near extreme term the results given by both methods are
in a very good agreement, and in this limit fields of different spin decay with
the same rate.Comment: 9 pages, 1 ancillary Mathematica(R) noteboo
DFT Calculations as a Tool to Analyse Quadrupole Splittings of Spin Crossover Fe(II) complexes
Density functional methods have been applied to calculate the quadrupole
splitting of a series of iron(II) spin crossover complexes. Experimental and
calculated values are in reasonable agreement. In one case spin-orbit coupling
is necessary to explain the very small quadrupole splitting value of 0.77 mm/s
at 293 K for a high-spin isomer
Quasinormal Modes in three-dimensional time-dependent Anti-de Sitter spacetime
The massless scalar wave propagation in the time-dependent BTZ black hole
background has been studied. It is shown that in the quasi-normal ringing both
the decay and oscillation time-scales are modified in the time-dependent
background.Comment: 8 pages and 7 figure
Self-gravitating fluid shells and their non-spherical oscillations in Newtonian theory
We summarize the general formalism describing surface flows in
three-dimensional space in a form which is suitable for various astrophysical
applications. We then apply the formalism to the analysis of non-radial
perturbations of self-gravitating spherical fluid shells.
Spherically symmetric gravitating shells (or bubbles) have been used in
numerous model problems especially in general relativity and cosmology. A
radially oscillating shell was recently suggested as a model for a variable
cosmic object. Within Newtonian gravity we show that self-gravitating static
fluid shells are unstable with respect to linear non-radial perturbations. Only
shells (bubbles) with a negative mass (or with a charge the repulsion of which
is compensated by a tension) are stable.Comment: 20 pages, to be published in the Astrophysical Journal, typos
correcte
Field propagation in de Sitter black holes
We present an exhaustive analysis of scalar, electromagnetic and
gravitational perturbations in the background of Schwarzchild-de Sitter and
Reissner-Nordstrom-de Sitter spacetimes. The field propagation is considered by
means of a semi-analytical (WKB) approach and two numerical schemes: the
characteristic and general initial value integrations. The results are compared
near the extreme cosmological constant regime, where analytical results are
presented. A unifying picture is established for the dynamics of different spin
fields.Comment: 15 pages, 16 figures, published versio
Square root singularity in the viscosity of neutral colloidal suspensions at large frequencies
The asymptotic frequency , dependence of the dynamic viscosity of
neutral hard sphere colloidal suspensions is shown to be of the form , where has been determined as a
function of the volume fraction , for all concentrations in the fluid
range, is the solvent viscosity and the P\'{e}clet time. For
a soft potential it is shown that, to leading order steepness, the asymptotic
behavior is the same as that for the hard sphere potential and a condition for
the cross-over behavior to is given. Our result for the hard
sphere potential generalizes a result of Cichocki and Felderhof obtained at low
concentrations and agrees well with the experiments of van der Werff et al, if
the usual Stokes-Einstein diffusion coefficient in the Smoluchowski
operator is consistently replaced by the short-time self diffusion coefficient
for non-dilute colloidal suspensions.Comment: 18 pages LaTeX, 1 postscript figur
End stage renal disease and survival in people with diabetes:a national database linkage study
© The Author 2014. Published by Oxford University Press on behalf of the Association of Physicians. Funding This work was supported by the Wellcome Trust through the Scottish Health Informatics Programme (SHIP). The SHIP is collaboration between the Universities of Aberdeen, Dundee, Edinburgh, Glasgow and St Andrews and the Information Services Division of National Health Service National Service Scotland. Funding for diabetes register linkage and data extraction was provided by the Chief Scientistâs Office of the Scottish Government. The Scottish Diabetes Research Network receives financial support from National Health Services Research Scotland. The Scottish Renal Registry is funded by the Information Services Division of National Health Service National Services Scotland but relies heavily on the goodwill of the contributing renal units who spent a large amount time working with Scottish Renal Registry staff to ensure that the data held within the register are accurate and complete.Peer reviewedPublisher PD
Evolution systems for non-linear perturbations of background geometries
The formulation of the initial value problem for the Einstein equations is at
the heart of obtaining interesting new solutions using numerical relativity and
still very much under theoretical and applied scrutiny. We develop a
specialised background geometry approach, for systems where there is
non-trivial a priori knowledge about the spacetime under study. The background
three-geometry and associated connection are used to express the ADM evolution
equations in terms of physical non-linear deviations from that background.
Expressing the equations in first order form leads naturally to a system
closely linked to the Einstein-Christoffel system, introduced by Anderson and
York, and sharing its hyperbolicity properties. We illustrate the drastic
alteration of the source structure of the equations, and discuss why this is
likely to be numerically advantageous.Comment: 12 pages, 3 figures, Revtex v3.0. Revised version to appear in
Physical Review
Halo Excitation of He in Inelastic and Charge-Exchange Reactions
Four-body distorted wave theory appropriate for nucleon-nucleus reactions
leading to 3-body continuum excitations of two-neutron Borromean halo nuclei is
developed. The peculiarities of the halo bound state and 3-body continuum are
fully taken into account by using the method of hyperspherical harmonics. The
procedure is applied for A=6 test-bench nuclei; thus we report detailed studies
of inclusive cross sections for inelastic He(p,p')He and
charge-exchange Li(n,p)He reactions at nucleon energy 50 MeV. The
theoretical low-energy spectra exhibit two resonance-like structures. The first
(narrow) is the excitation of the well-known three-body resonance. The
second (broad) bump is a composition of overlapping soft modes of
multipolarities whose relative weights depend on
transferred momentum and reaction type. Inelastic scattering is the most
selective tool for studying the soft dipole excitation mode.Comment: Submitted to Phys. Rev. C., 11 figures using eps
Diffusion Limited Aggregation with Power-Law Pinning
Using stochastic conformal mapping techniques we study the patterns emerging
from Laplacian growth with a power-law decaying threshold for growth
(where is the radius of the particle cluster). For
the growth pattern is in the same universality class as diffusion
limited aggregation (DLA) growth, while for the resulting patterns
have a lower fractal dimension than a DLA cluster due to the
enhancement of growth at the hot tips of the developing pattern. Our results
indicate that a pinning transition occurs at , significantly
smaller than might be expected from the lower bound
of multifractal spectrum of DLA. This limiting case shows that the most
singular tips in the pruned cluster now correspond to those expected for a
purely one-dimensional line. Using multifractal analysis, analytic expressions
are established for both close to the breakdown of DLA universality
class, i.e., , and close to the pinning transition, i.e.,
.Comment: 5 pages, e figures, submitted to Phys. Rev.
- âŠ