268 research outputs found

    Approach to endoscopic extraperitoneal radical prostatectomy (EERPE): the impact of previous laparoscopic experience on the learning curve

    Get PDF
    BACKGROUND: We report our approach regarding the technique of endoscopic extraperitoneal radical prostatectomy (EERPE) and analyze the learning curve of two surgeons after thorough technical training under expert monitoring. The purpose of this study was to investigate the influence of expert monitoring on the surgical outcome and whether previous laparoscopic experience influences the surgeon's learning curve. METHODS: EERPE was performed on 120 consecutive patients by two surgeons with different experience in laparoscopy. An analysis and comparison of their learning curve was made. RESULTS: Median operation time: 200 (110-415) minutes. Complications: no conversion, blood transfusion (1.7%), rectal injury (3.3%). Median catheterisation time: 6 (5-45) days. Histopathological data: 55% pT2, 45% pT3 with a positive surgical margin rate of 6.1% and 46%, respectively. After 12 months, 78% of the patients were continent, 22% used 1 or more pad. Potency rate with or without PDE-5-inhibitors was 66% with bilateral and 31% with unilateral nerve-sparing, respectively. Operation time was the only parameter to differ significantly between the two surgeons. CONCLUSION: EERPE can be learned within a short teaching phase. Previous laparoscopic experience is reflected by shorter operation times, not by lower complication rates or superior early oncological data

    About the plastic response of silicate glasses at the micronscale

    Get PDF
    Despite their brittleness, silicate glasses undergo plastic deformation at the micron scale. Mechanical contact and indentation are the most common situations of interest. The plasticity of glasses is characterized not only by shear flow but also by a permanent densification process. We present novel observations of the deformation and fracture of amorphous silica micropillars of various sizes using In Situ SEM Micro-Compression (Fig 1), that can help better understand the mechanisms occurring prior to its fracture [1]. Exhibiting one of the highest ratios of shear stress on shear modulus, fused silica thus further distinguishes itself from other amorphous materials. Moreover, nanocompression allows successful observations of crack initiation and growth. In parallel to this experimental investigation, atomistic simulations [2] aiming to investigate the theoretical plastic response of silicate glasses under coupled shear-pressure stress state was run. The results were interpreted in terms of volumetric and shear hardening. A buckling-like behaviour is clearly evidenced at low density (large free-volume) whereas a BMG-like is observed for samples densified until saturation. Thanks to this rich set of data, it seems now possible to define a constitutive model taking into account both nanomechanical results, i.e. nanopillars, nanoindentation, diamond anvil cell, and molecular dynamics simulation Despite their brittleness, silicate glasses undergo plastic deformation at the micron scale. Mechanical contact and indentation are the most common situations of interest. The plasticity of glasses is characterized not only by shear flow but also by a permanent densification process. We present novel observations of the deformation and fracture of amorphous silica micropillars of various sizes using In Situ SEM Micro-Compression (Fig 1), that can help better understand the mechanisms occurring prior to its fracture [1]. Exhibiting one of the highest ratios of shear stress on shear modulus, fused silica thus further distinguishes itself from other amorphous materials. Moreover, nanocompression allows successful observations of crack initiation and growth. In parallel to this experimental investigation, atomistic simulations [2] aiming to investigate the theoretical plastic response of silicate glasses under coupled shear-pressure stress state was run. The results were interpreted in terms of volumetric and shear hardening. A buckling-like behaviour is clearly evidenced at low density (large free-volume) whereas a BMG-like is observed for samples densified until saturation. Thanks to this rich set of data, it seems now possible to define a constitutive model taking into account both nanomechanical results, i.e. nanopillars, nanoindentation, diamond anvil cell, and molecular dynamics simulation

    Laparoscopic Partial Nephrectomy After Selective Embolization and Robot-Assisted Partial Nephrectomy: A Comparison of Short-Term Oncological and Functional Outcomes

    Get PDF
    BACKGROUND: Partial nephrectomy (PN) is the standard treatment for localized renal tumors. Laparoscopic PN (LPN) after selective embolization of tumor (LPNE) in a hybrid operating room has been developed to make LPN easier and safer. The aim of this study was to compare outcomes of LPNE and robot-assisted PN (RAPN). PATIENTS AND METHODS: All patients who underwent an LPNE at Angers University Hospital between May 2015 and April 2017, and a RAPN at Diaconesses Croix Saint Simon hospital between October 2014 and April 2017 were prospectively included. The functional outcomes were evaluated using the change of estimated glomerular filtration rate (eGFR) at 1 month, and the oncological outcomes were evaluated using the positive surgical margin (PSM) rate. RESULTS: Fifty-seven patients underwent LPNE and 48 underwent RAPN. There was no difference between oncological and functional outcomes, with 2 PSM (4.4%) in the LPNE group and 4 PSM (10.3%) in the RAPN group (P = .32), and a mean change in eGFR at 1 month of -5.5% for LPNE and -8.3% for RAPN (P = .17). The mean surgical time was shorter in the LPNE group (150 vs. 195 minutes; P < .001), and mean estimated blood loss was less in the LPNE group (185 vs. 345 mL; P = .04). CONCLUSION: The short-term oncological and functional outcomes for LPNE were comparable with those for RAPN. A longer follow-up and a larger cohort of patients would be necessary to verify the benefits of LPNE, which appears to be a very interesting alternative to RAPN

    T Cells Recognizing a Peptide Contaminant Undetectable by Mass Spectrometry

    Get PDF
    Synthetic peptides are widely used in immunological research as epitopes to stimulate their cognate T cells. These preparations are never completely pure, but trace contaminants are commonly revealed by mass spectrometry quality controls. In an effort to characterize novel major histocompatibility complex (MHC) Class I-restricted β-cell epitopes in non-obese diabetic (NOD) mice, we identified islet-infiltrating CD8+ T cells recognizing a contaminating peptide. The amount of this contaminant was so small to be undetectable by direct mass spectrometry. Only after concentration by liquid chromatography, we observed a mass peak corresponding to an immunodominant islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)206-214 epitope described in the literature. Generation of CD8+ T-cell clones recognizing IGRP206-214 using a novel method confirmed the identity of the contaminant, further underlining the immunodominance of IGRP206-214. If left undetected, minute impurities in synthetic peptide preparations may thus give spurious results
    • …
    corecore