24 research outputs found

    Unified Homogenization Theory for Magnetoinductive and Electromagnetic Waves in Split Ring Metamaterials

    Full text link
    A unified homogenization procedure for split ring metamaterials taking into account time and spatial dispersion is introduced. The procedure is based on two coupled systems of equations. The first one comes from an approximation of the metamaterial as a cubic arrangement of coupled LC circuits, giving the relation between currents and local magnetic field. The second equation comes from macroscopic Maxwell equations, and gives the relation between the macroscopic magnetic field and the average magnetization of the metamaterial. It is shown that electromagnetic and magnetoinductive waves propagating in the metamaterial are obtained from this analysis. Therefore, the proposed time and spatially dispersive permeability accounts for the characterization of the complete spectrum of waves of the metamaterial. Finally, it is shown that the proposed theory is in good quantitative and qualitative agreement with full wave simulations.Comment: 4 pages, 3 figure

    Correlation of counterions with rodlike macroions as assessed by anomalous small-angle X-ray scattering

    No full text
    We consider the analysis of a rodlike synthetic polyelectrolyte in solution by anomalous small-angle X-ray scattering (ASAXS) in order to elucidate the correlation of the counterions with the highly charged macroion. ASAXS can be applied to these systems because the absorption edge of typical counterions, for example, bromine or iodine ions can be attained by synchrotron radiation. Model calculations using the Poisson-Boltzmann cell model show that ASAXS furnishes two terms caused by the anomalous dispersion of the counterions. The leading terms is a cross-term between the ordinary scattering amplitude of the polyelectrolyte and the real part of the scattering length f ' of the counterions. A second term refers solely to the anomalous contribution of the counterions, i.e., to f ' and f " (f ": imaginary part of scattering length). Preliminary data obtained from rodlike synthetic macroions having iodine counterions corroborate the theoretical deductions. They demonstrate that ASAXS is capable of furnishing information that is not available by the ordinary SAXS experiment

    The distribution of counterions around synthetic rod-like polyelectrolytes in solution

    No full text
    An investigation of the radial distribution of the counterions of a synthetic rodlike polyelectrolyte in aqueous solution is presented. The cationic polyelectrolyte used here has a poly(p-phenylene) backbone. For typical molecular weights the macroion comprises approximately one persistence length (ca. 20 nm) and effects of finite stiffness may be disregarded. Each repeating unit bears four charges which leads to a charge parameter of xi = 6.65. The distribution of the iodide counterions around this highly charged macroion is studied by small-angle X-ray scattering (SAXS) in dilute aqueous solution. These investigations are supplemented by measurements using anomalous small-angle X-ray scattering (ASAXS) that furnishes additional information about the contrast of the macroion. Data taken at high scattering angles give indication for contributions caused by the longitudinal fluctuations of the counterions. After correction for this effect the experimental results are compared to intensities calculated by use of the Poisson-Boltzmann (PB)-cell model. It is found that the PB-cell model describes the corrected data at intermediate and high scattering angles. Deviations at low scattering angle are attributed to the mutual interaction of the rod-like polyelectrolyte that can be described in terms of an effective structure factor. Data taken at lowest scattering angles point to a weak attraction between the rod-like macroions

    A systematic approach for testing expression of human full-length proteins in cell-free expression systems

    Get PDF
    Background The growing field of proteomics and systems biology is resulting in an ever increasing demand for purified recombinant proteins for structural and functional studies. Here, we show a systematic approach to successfully express a full-length protein of interest by using cell-free and cell-based expression systems. Results In a pre-screen, we evaluated the expression of 960 human full-length open reading frames in Escherichia coli (in vivo and in vitro). After analysing the protein expression rate and solubility, we chose a subset of 87 plasmids yielding no protein product in E. coli in vivo. These targets were subjected to a more detailed analysis comparing a prokaryotic cell-free E. coli system with an eukaryotic wheat germ system. In addition, we determined the expression rate, yield and solubility of those proteins. After sequence optimisation for the E. coli in vitro system and generating linear templates for wheat germ expression, the success rate of cell-free protein expression reached 93%. Conclusion We have demonstrated that protein expression in cell-free systems is an appropriate technology for the successful expression of soluble full-length proteins. In our study, wheat germ expression using a two compartment system is the method of choice as it shows high solubility and high protein yield
    corecore