3,171 research outputs found

    X-Ray Evidence for Flare Density Variations and Continual Chromospheric Evaporation in Proxima Centauri

    Get PDF
    Using the XMM-Newton X-ray observatory to monitor the nearest star to the Sun, Proxima Centauri, we recorded the weakest X-ray flares on a magnetically active star ever observed. Correlated X-ray and optical variability provide strong support for coronal energy and mass supply by a nearly continuous sequence of rapid explosive energy releases. Variable emission line fluxes were observed in the He-like triplets of OVII and NeIX during a giant flare. They give direct X-ray evidence for density variations, implying densities between 2x10^{10} - 4x10^{11} cm^{-3} and providing estimates of the mass and the volume of the line-emitting plasma. We discuss the data in the context of the chromospheric evaporation scenario.Comment: 10 pages, 2 figures, accepted by The Astrophysical Journal, Letters; improved calculations of radiative loss of cool plasma (toward end of paper

    A Spectacular VHE Gamma-Ray Outburst from PKS 2155-304 in 2006

    Full text link
    Since 2002 the VHE (>100 GeV) gamma-ray flux of the high-frequency peaked BL Lac PKS 2155-304 has been monitored with the High Energy Stereoscopic System (HESS). An extreme gamma-ray outburst was detected in the early hours of July 28, 2006 (MJD 53944). The average flux above 200 GeV observed during this outburst is ~7 times the flux observed from the Crab Nebula above the same threshold. Peak fluxes are measured with one-minute time scale resolution at more than twice this average value. Variability is seen up to ~600 s in the Fourier power spectrum, and well-resolved bursts varying on time scales of ~200 seconds are observed. There are no strong indications for spectral variability within the data. Assuming the emission region has a size comparable to the Schwarzschild radius of a ~10^9 solar mass black hole, Doppler factors greater than 100 are required to accommodate the observed variability time scales.Comment: 4 pages, 3 figures; To appear in the Proceedings of the 30th ICRC (Merida, Mexico

    Correlations and charge distributions of medium heavy nuclei

    Get PDF
    The effects of long- and short-range correlations on the charge distributions of some medium and heavy nuclei are investigated. The long-range correlations are treated within the Random Phase Approximation framework and the short-range correlations with a model inspired to the Correlation Basis Function theory. The two type of correlations produce effects of the same order of magnitude. A comparison with the empirical charge distribution difference between 206Pb and 205Tl shows the need of including both correlations to obtain a good description of the data.Comment: 20 pages, Latex, accepted for publication in Jour. Phys.

    The Missing Luminous Blue Variables and the Bistability Jump

    Get PDF
    We discuss an interesting feature of the distribution of luminous blue variables on the H-R diagram, and we propose a connection with the bistability jump in the winds of early-type supergiants. There appears to be a deficiency of quiescent LBVs on the S Dor instability strip at luminosities between log L/Lsun = 5.6 and 5.8. The upper boundary, is also where the temperature-dependent S Dor instability strip intersects the bistability jump at about 21,000 K. Due to increased opacity, winds of early-type supergiants are slower and denser on the cool side of the bistability jump, and we postulate that this may trigger optically-thick winds that inhibit quiescent LBVs from residing there. We conduct numerical simulations of radiation-driven winds for a range of temperatures, masses, and velocity laws at log L/Lsun=5.7 to see what effect the bistability jump should have. We find that for relatively low stellar masses the increase in wind density at the bistability jump leads to the formation of a modest to strong pseudo photosphere -- enough to make an early B-type star appear as a yellow hypergiant. Thus, the proposed mechanism will be most relevant for LBVs that are post-red supergiants. Yellow hypergiants like IRC+10420 and rho Cas occupy the same luminosity range as the ``missing'' LBVs, and show apparent temperature variations at constant luminosity. If these yellow hypergiants do eventually become Wolf-Rayet stars, we speculate that they may skip the normal LBV phase, at least as far as their apparent positions on the HR diagram are concerned.Comment: 20 pages, 4 figs, accepted by Ap

    The Distribution of Redshifts in New Samples of Quasi-stellar Objects

    Get PDF
    Two new samples of QSOs have been constructed from recent surveys to test the hypothesis that the redshift distribution of bright QSOs is periodic in log(1+z)\log(1+z). The first of these comprises 57 different redshifts among all known close pairs or multiple QSOs, with image separations \leq 10\arcsec, and the second consists of 39 QSOs selected through their X-ray emission and their proximity to bright comparatively nearby active galaxies. The redshift distributions of the samples are found to exhibit distinct peaks with a periodic separation of 0.089\sim 0.089 in log(1+z)\log(1+z) identical to that claimed in earlier samples but now extended out to higher redshift peaks z=2.63,3.45z = 2.63, 3.45 and 4.47, predicted by the formula but never seen before. The periodicity is also seen in a third sample, the 78 QSOs of the 3C and 3CR catalogues. It is present in these three datasets at an overall significance level 10510^{-5} - 10610^{-6}, and appears not to be explicable by spectroscopic or similar selection effects. Possible interpretations are briefly discussed.Comment: submitted for publication in the Astronomical Journal, 15 figure

    Performance of the Two Aerogel Cherenkov Detectors of the JLab Hall A Hadron Spectrometer

    Full text link
    We report on the design and commissioning of two silica aerogel Cherenkov detectors with different refractive indices. In particular, extraordinary performance in terms of the number of detected photoelectrons was achieved through an appropriate choice of PMT type and reflector, along with some design considerations. After four years of operation, the number of detected photoelectrons was found to be noticeably reduced in both detectors as a result of contamination, yellowing, of the aerogel material. Along with the details of the set-up, we illustrate the characteristics of the detectors during different time periods and the probable causes of the contamination. In particular we show that the replacement of the contaminated aerogel and parts of the reflecting material has almost restored the initial performance of the detectors.Comment: 18 pages, 9 Figures, 4 Tables, 44 Reference

    The Central X-Ray Point Source in Cassiopeia A

    Get PDF
    The spectacular first light observation by the Chandra X-Ray Observatory revealed an X-ray point source near the center of the 300 yr old Cas A supernova remnant. We present an analysis of the public X-ray spectral and timing data. No coherent pulsations were detected in the Chandra/HRC data. The 3-sigma upper limit on the pulsed fraction is 20 ms. The Chandra/ACIS spectrum of the point source may be fit with an ideal blackbody (kT=0.5 keV), or with BB models modified by the presence of a NS atmosphere (kT=0.25-0.35 keV), but the temperature is higher and the inferred emitting area lower than expected for a 300 yr old NS according to standard cooling models. The spectrum may also be fit with a power law model (photon index 2.8-3.6). Both the spectral properties and the timing limits of the point source are inconsistent with a young Crab-like pulsar, but are quite similar to the properties of the anomalous X-ray pulsars. The spectral parameters are also very similar to those of the other radio-quiet X-ray point sources in the supernova remnants Pup A, RCW 103, and PKS 1209-52. Current limits on an optical counterpart for the Cas A point source rule out models that invoke fallback accretion onto a compact object if fallback disk properties are similar to those in quiescent low-mass X-ray binaries. However, the optical limits are marginally consistent with plausible alternative assumptions for a fallback disk. In this case, accreting NS models can explain the X-ray data, but an accreting BH model is not promising.Comment: 17 pages including 2 figs. To appear in ApJ, Vol. 546 (Jan 10, 2001). Minor revisions per referee. Pulsation limits revised in light of HRC wiring problem. Typos correcte

    Confronting the Superbubble Model with X-ray Observations of 30 Dor C

    Get PDF
    We present an analysis of XMM-Newton observations of the superbubble 30 Dor C and compare the results with the predictions from the standard wind-blown bubble model. We find that the observed X-ray spectra cannot be fitted satisfactorily with the model alone and that there is evidence for nonthermal X-ray emission, which is particularly important at > 4 keV. The total unabsorbed 0.1-10 keV luminosities of the eastern and western parts of the bubble are ~3 10^36 erg/s and ~5 10^36 erg/s, respectively. The unabsorbed 0.1-10 keV luminosity of the bubble model is 4 10^36 erg/s and so the power-law component contributes between 1/3 and 1/2 to the total unabsorbed luminosity in this energy band. The nature of the hard nonthermal emission is not clear, although recent supernovae in the bubble may be responsible. We expect that about one or two core-collapse supernovae could have occured and are required to explain the enrichment of the hot gas, as evidenced by the overabundance of alpha-elements by a factor of 3, compared to the mean value of 0.5 solar for the interstellar medium in the Large Magellanic Cloud. As in previous studies of various superbubbles, the amount of energy currently present in 30 Dor C is significantly less than the expected energy input from the enclosed massive stars over their lifetime. We speculate that a substantial fraction of the input energy may be radiated in far-infrared by dust grains, which are mixed with the hot gas because of the thermal conduction and/or dynamic mixing.Comment: 25 pages, 4 figures. To appear in The Astrophysical Journal, August 20, 2004 issu

    Ten-Micron Observations of Nearby Young Stars

    Get PDF
    (abridged) We present new 10-micron photometry of 21 nearby young stars obtained at the Palomar 5-meter and at the Keck I 10-meter telescopes as part of a program to search for dust in the habitable zone of young stars. Thirteen of the stars are in the F-K spectral type range ("solar analogs"), 4 have B or A spectral types, and 4 have spectral type M. We confirm existing IRAS 12-micron and ground-based 10-micron photometry for 10 of the stars, and present new insight into this spectral regime for the rest. Excess emission at 10 micron is not found in any of the young solar analogs, except for a possible 2.4-sigma detection in the G5V star HD 88638. The G2V star HD 107146, which does not display a 10-micron excess, is identified as a new Vega-like candidate, based on our 10-micron photospheric detection, combined with previously unidentified 60-micron and 100-micron IRAS excesses. Among the early-type stars, a 10-micron excess is detected only in HD 109573A (HR 4796A), confirming prior observations; among the M dwarfs, excesses are confirmed in AA Tau, CD -40 8434, and Hen 3-600A. A previously suggested N band excess in the M3 dwarf CD -33 7795 is shown to be consistent with photospheric emission.Comment: 40 pages, 4 figures, 5 tables. To appear in the January 1, 2004 issue of Ap

    Edge and bulk effects in the Terahertz-photoconductivity of an antidot superlattice

    Full text link
    We investigate the Terahertz(THz)-response of a square antidot superlattice by means of photoconductivity measurements using a Fourier-transform-spectrometer. We detect, spectrally resolved, the cyclotron resonance and the fundamental magnetoplasmon mode of the periodic superlattice. In the dissipative transport regime both resonances are observed in the photoresponse. In the adiabatic transport regime, at integer filling factor ν=2\nu =2, only the cyclotron resonance is observed. From this we infer that different mechanisms contribute to converting the absorption of THz-radiation into photoconductivity in the cyclotron and in the magnetoplasmon resonances, respectively.Comment: 15 pages, 4 figures, submitted to Phys. Rev.
    corecore