290 research outputs found

    Measurement of Length and Position with Frequency Combs

    Get PDF
    We show two different absolute distance measurement methods with micrometer accuracy based on frequency combs, and we discuss possible applications. Using a mode- locked laser and MEMS-based tracking optics, we measure the 3D position of a retroreflector within 10 ms and with a 24 μm volumetric accuracy. We also investigate modulator-based combs and show that they enable highly sensitive surface topography measurements with microsecond acquisition times and micrometer precision. Moreover, the potential for photonic integration of frequency comb sources is explored

    100 GHz silicon-organic hybrid modulator

    Get PDF
    Electro-optic modulation at frequencies of 100 GHz and beyond is important for photonic-electronic signal processing at the highest speeds. To date, however, only a small number of devices exist that can operate up to this frequency. In this study, we demonstrate that this frequency range can be addressed by nanophotonic, silicon-based modulators. We exploit the ultrafast Pockels effect by using the silicon–organic hybrid (SOH) platform, which combines highly nonlinear organic molecules with silicon waveguides. Until now, the bandwidth of these devices was limited by the losses of the radiofrequency (RF) signal and the RC (resistor-capacitor) time constant of the silicon structure. The RF losses are overcome by using a device as short as 500 µm, and the RC time constant is decreased by using a highly conductive electron accumulation layer and an improved gate insulator. Using this method, we demonstrate for the first time an integrated silicon modulator with a 3dB bandwidth at an operating frequency beyond 100 GHz. Our results clearly indicate that the RC time constant is not a fundamental speed limitation of SOH devices at these frequencies. Our device has a voltage–length product of only VπL=11 V mm, which compares favorably with the best silicon-photonic modulators available today. Using cladding materials with stronger nonlinearities, the voltage–length product is expected to improve by more than an order of magnitude

    100 Gbit/s electro-optic modulator and 56 Gbits/s wavelength converter for DQPSK data in silicon-organic hybrid (SOH) technology

    Get PDF
    CMOS-compatible silicon photonics combined with covers of chi (2) or chi (3)-nonlinear organic material allows electro-optic modulators and all-optical wavelength converters for data rates of 100 Gbit/s and beyond. The devices are not impaired by free carriers
    corecore