111 research outputs found

    A compiled and systematic reference map of nucleosome positions across the Saccharomyces cerevisiae genome

    Get PDF
    Different genome-wide reference maps of Saccharomyces cerevisiae nucleosome positions are compiled and can be visualized on a browser

    Chromatin meets RNA polymerase II

    Get PDF
    A report on the Cold Spring Harbor Laboratory meeting 'Mechanisms of eukaryotic transcription', Cold Spring Harbor, USA, 2 August-2 September 2007

    A TATA binding protein regulatory network that governs transcription complex assembly

    Get PDF
    A portion of the assembly process involving the regulation of the TATA binding protein (TBP) throughout the yeast genome is modeled and experimentally tested

    General mechanism for RecA protein binding to duplex DNA.

    Get PDF
    RecA protein binding to duplex DNA occurs by a multi-step process. The tau analysis, originally developed to examine the binding of RNA polymerase to promoter DNA, is adapted here to study two kinetically distinguishable reaction segments of RecAdouble stranded (ds) DNA complex formation in greater detail. One, which is probably a rapid preequilibrium in which RecA protein binds weakly to native dsDNA, is found to have the following properties: (1) a sensitivity to pH, involving a net release of approximately one proton; (2) a sensitivity to salts; (3) little or no dependence on temperature; (4) little or no dependence on DNA length. The second reaction segment, the rate-limiting nucleation of nucleoprotein filament formation accompanied by partial DNA unwinding, is found to have the following properties: (1) a sensitivity to pH, involving a net uptake of approximately three protons; (2) a sensitivity to salts; (3) a relatively large dependence on temperature, with an Arrhenius activation energy of 39 kcal mol-'; (4) a sensitivity to DNA topology; (5) a dependence on DNA length. These results contribute to a general mechanism for RecA protein binding to duplex DNA, which can provide a rationale for the apparent preferential binding to altered DNA structures such as pyrimidine dimers and Z-DNA

    A comprehensive and high-resolution genome-wide response of p53 to stress

    Get PDF
    Tumor suppressor p53 regulates transcription of stress-response genes. Many p53 targets remain undiscovered because of uncertainty as to where p53 binds in the genome and the fact that few genes reside near p53-bound recognition elements (REs). Using chromatin immunoprecipitation followed by exonuclease treatment (ChIP-exo), we associated p53 with 2,183 unsplit REs. REs were positionally constrained with other REs and other regulatory elements, which may reflect structurally organized p53 interactions. Surprisingly, stress resulted in increased occupancy of transcription factor IIB (TFIIB) and RNA polymerase (Pol) II near REs, which was reduced when p53 was present. A subset associated with antisense RNA near stress-response genes. The combination of high-confidence locations for p53/REs, TFIIB/Pol II, and their changes in response to stress allowed us to identify 151 high-confidence p53-regulated genes, substantially increasing the number of p53 targets. These genes composed a large portion of a predefined DNA-damage stress-response network. Thus, p53 plays a comprehensive role in regulating the stress-response network, including regulating noncoding transcription

    Computational Modelling of Genome-Side Transcription Assembly Networks Using a Fluidics Analogy

    Get PDF
    Understanding how a myriad of transcription regulators work to modulate mRNA output at thousands of genes remains a fundamental challenge in molecular biology. Here we develop a computational tool to aid in assessing the plausibility of gene regulatory models derived from genome-wide expression profiling of cells mutant for transcription regulators. mRNA output is modelled as fluid flow in a pipe lattice, with assembly of the transcription machinery represented by the effect of valves. Transcriptional regulators are represented as external pressure heads that determine flow rate. Modelling mutations in regulatory proteins is achieved by adjusting valves' on/off settings. The topology of the lattice is designed by the experimentalist to resemble the expected interconnection between the modelled agents and their influence on mRNA expression. Users can compare multiple lattice configurations so as to find the one that minimizes the error with experimental data. This computational model provides a means to test the plausibility of transcription regulation models derived from large genomic data sets

    A new, highly conserved domain in Swi2/Snf2 is required for SWI/SNF remodeling

    Get PDF
    SWI/SNF is an ATP-dependent remodeler that mobilizes nucleosomes and has important roles in gene regulation. The catalytic subunit of SWI/SNF has an ATP-dependent DNA translocase domain that is essential for remodeling. Besides the DNA translocase domain there are other domains in the catalytic subunit of SWI/SNF that have important roles in mobilizing nucleosomes. One of these domains, termed SnAC (Snf2 ATP Coupling), is conserved in all eukaryotic SWI/SNF complexes and is located between the ATPase and A-T hook domains. Here, we show that the SnAC domain is essential for SWI/SNF activity. The SnAC domain is not required for SWI/SNF complex integrity, efficient nucleosome binding, or recruitment by acidic transcription activators. The SnAC domain is however required in vivo for transcription regulation by SWI/SNF as seen by alternative carbon source growth assays, northern analysis, and genome-wide expression profiling. The ATPase and nucleosome mobilizing activities of SWI/SNF are severely affected when the SnAC domain is removed or mutated. The SnAC domain positively regulates the catalytic activity of the ATPase domain of SWI/SNF to hydrolyze ATP without significantly affecting its affinity for ATP

    Genome-Wide Modeling of Transcription Preinitiation Complex Disassembly Mechanisms using ChIP-chip Data

    Get PDF
    Apparent occupancy levels of proteins bound to DNA in vivo can now be routinely measured on a genomic scale. A challenge in relating these occupancy levels to assembly mechanisms that are defined with biochemically isolated components lies in the veracity of assumptions made regarding the in vivo system. Assumptions regarding behavior of molecules in vivo can neither be proven true nor false, and thus is necessarily subjective. Nevertheless, within those confines, connecting in vivo protein-DNA interaction observations with defined biochemical mechanisms is an important step towards fully defining and understanding assembly/disassembly mechanisms in vivo. To this end, we have developed a computational program PathCom that models in vivo protein-DNA occupancy data as biochemical mechanisms under the assumption that occupancy levels can be related to binding duration and explicitly defined assembly/disassembly reactions. We exemplify the process with the assembly of the general transcription factors (TBP, TFIIB, TFIIE, TFIIF, TFIIH, and RNA polymerase II) at the genes of the budding yeast Saccharomyces. Within the assumption inherent in the system our modeling suggests that TBP occupancy at promoters is rather transient compared to other general factors, despite the importance of TBP in nucleating assembly of the preinitiation complex. PathCom is suitable for modeling any assembly/disassembly pathway, given that all the proteins (or species) come together to form a complex

    Genomic Organization of H2Av Containing Nucleosomes in Drosophila Heterochromatin

    Get PDF
    H2Av is a versatile histone variant that plays both positive and negative roles in transcription, DNA repair, and chromatin structure in Drosophila. H2Av, and its broader homolog H2A.Z, tend to be enriched toward 5′ ends of genes, and exist in both euchromatin and heterochromatin. Its organization around euchromatin genes and other features have been described in many eukaryotic model organisms. However, less is known about H2Av nucleosome organization in heterochromatin. Here we report the properties and organization of individual H2Av nucleosomes around genes and transposable elements located in Drosophila heterochromatic regions. We compare the similarity and differences with that found in euchromatic regions. Our analyses suggest that nucleosomes are intrinsically positioned on inverted repeats of DNA transposable elements such as those related to the “1360” element, but are not intrinsically positioned on retrotransposon-related elements

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome
    corecore