593 research outputs found

    Nuclear magnetic octupole moment and the hyperfine structure of the 5D3/2,5/25D_{3/2,5/2} states of the Ba+^+ ion

    Full text link
    The hyperfine structure of the long-lived 5D3/25D_{3/2} and 5D5/25D_{5/2} levels of Ba+^+ ion is analyzed. A procedure for extracting relatively unexplored nuclear magnetic moments Ω\Omega is presented. The relevant electronic matrix elements are computed in the framework of the ab initio relativistic many-body perturbation theory. Both the first- and the second-order (in the hyperfine interaction) corrections to the energy levels are analyzed. It is shown that a simultaneous measurement of the hyperfine structure of the entire 5DJ5D_J fine-structure manifold allows one to extract Ω\Omega without contamination from the second-order corrections. Measurements to the required accuracy should be possible with a single trapped barium ion using sensitive techniques already demonstrated in Ba+^+ experiments.Comment: Phys Rev A in pres

    Coherent Excitation of the 6S1/2 to 5D3/2 Electric Quadrupole Transition in 138Ba+

    Full text link
    The electric dipole-forbidden, quadrupole 6S1/2 5D3/2 transition in Ba+ near 2051 nm, with a natural linewidth of 13 mHz, is attractive for potential observation of parity non-conservation, and also as a clock transition for a barium ion optical frequency standard. This transition also offers a direct means of populating the metastable 5D3/2 state to measure the nuclear magnetic octupole moment in the odd barium isotopes. Light from a diode-pumped, solid state Tm,Ho:YLF laser operating at 2051 nm is used to coherently drive this transition between resolved Zeeman levels in a single trapped 138Ba+ ion. The frequency of the laser is stabilized to a high finesse Fabry Perot cavity at 1025 nm after being frequency doubled. Rabi oscillations on this transition indicate a laser-ion coherence time of 3 ms, most likely limited by ambient magnetic field fluctuations.Comment: 5 pages, 5 figure

    Recommendations for the Creation of a Center for Citizen Science

    Get PDF
    The explosive growth of citizen science has led to myriad independent projects in Minnesota and beyond. Here, we examine whether the field of citizen science would benefit from a center to coordinate efforts and help citizen science practitioners. We present results of a focus group–based needs assessment involving 52 practitioners active in citizen science. The main conclusions are that establishment of a center for citizen science would benefit efforts and that a statewide center should serve multiple functions. Though this process focused on Minnesota, we believe our findings and recommendations are applicable to and would benefit Extension efforts anywhere

    Measurement of Linear Stark Interference in 199Hg

    Full text link
    We present measurements of Stark interference in the 61S0^1S_0 →\rightarrow 63P1^3P_1 transition in 199^{199}Hg, a process whereby a static electric field EE mixes magnetic dipole and electric quadrupole couplings into an electric dipole transition, leading to EE-linear energy shifts similar to those produced by a permanent atomic electric dipole moment (EDM). The measured interference amplitude, aSIa_{SI} = (aM1+aE2)(a_{M1} + a_{E2}) = (5.8 ±\pm 1.5)×10−9\times 10^{-9} (kV/cm)−1^{-1}, agrees with relativistic, many-body predictions and confirms that earlier central-field estimates are a factor of 10 too large. More importantly, this study validates the capability of the 199^{199}Hg EDM search apparatus to resolve non-trivial, controlled, and sub-nHz Larmor frequency shifts with EDM-like characteristics.Comment: 4 pages, 4 figures, 1 table; revised in response to reviewer comment

    Effects of confinement on the permanent electric-dipole moment of Xe atoms in liquid Xe

    Full text link
    Searches for permanent electric-dipole moments (EDM) of atoms provide important constraints on competing extensions to the standard model of elementary particles. Recently proposed experiment with liquid 129^{129}Xe [M.V. Romalis and M.P. Ledbetter, Phys. Rev. Lett. \textbf{87}, 067601 (2001)] may significantly improve present limits on the EDMs. To interpret experimental data in terms of CP-violating sources, one must relate measured atomic EDM to various model interactions via electronic-structure calculations. Here we study density dependence of atomic EDMs. The analysis is carried out in the framework of the cell model of the liquid coupled with relativistic atomic-structure calculations. We find that compared to an isolated atom, the EDM of an atom of liquid Xe is suppressed by about 40%

    Pulsed beams as field probes for precision measurement

    Full text link
    We describe a technique for mapping the spatial variation of static electric, static magnetic, and rf magnetic fields using a pulsed atomic or molecular beam. The method is demonstrated using a beam designed to measure the electric dipole moment of the electron. We present maps of the interaction region, showing sensitivity to (i) electric field variation of 1.5 V/cm at 3.3 kV/cm with a spatial resolution of 15 mm; (ii) magnetic field variation of 5 nT with 25 mm resolution; (iii) radio-frequency magnetic field amplitude with 15 mm resolution. This new diagnostic technique is very powerful in the context of high-precision atomic and molecular physics experiments, where pulsed beams have not hitherto found widespread application.Comment: 6 pages, 12 figures. Figures heavily compressed to comply with arxiv's antediluvian file-size polic

    Improved limit on the permanent electric dipole moment of 199Hg

    Full text link
    We report the results of a new experimental search for a permanent electric dipole moment of 199Hg utilizing a stack of four vapor cells. We find d(199Hg) = (0.49 \pm 1.29_stat \pm 0.76_syst) x 10^{-29} e cm, and interpret this as a new upper bound, |d(199Hg)| < 3.1 x 10^{-29} e cm (95% C.L.). This result improves our previous 199Hg limit by a factor of 7, and can be used to set new constraints on CP violation in physics beyond the standard model.Comment: 4 pages, 4 figures. additional reference, minor edits in response to reviewer comment

    Precision measurement of light shifts at two off-resonant wavelengths in a single trapped Ba+ ion and determination of atomic dipole matrix elements

    Full text link
    We define and measure the ratio (R) of the vector ac-Stark effect (or light shift) in the 6S_1/2 and 5D_3/2 states of a single trapped barium ion to 0.2% accuracy at two different off-resonant wavelengths. We earlier found R = -11.494(13) at 514.531nm and now report the value at 1111.68nm, R = +0.4176(8). These observations together yield a value of the matrix element, previously unknown in the literature. Also, comparison of our results with an ab initio calculation of dynamic polarizability would yield a new test of atomic theory and improve the understanding of atomic structure needed to interpret a proposed atomic parity violation experiment.Comment: 12 pages, 11 figures, in submission to PR

    Berry Phase Generation and Measurement in a Single Trapped Ion

    Full text link
    In this work, we propose a new design of an ion trap which can enable us to generate state specific Berry phase in a single trapped ion. Such a design will enable us to study the physics at the boundary of abelian and non-abelian symmetries and can also have significant impact in quantum computation
    • …
    corecore