1,359 research outputs found

    MACHOs, White Dwarfs, and the Age of the Universe

    Full text link
    (Abridged Abstract) A favored interpretation of recent microlensing measurements towards the Large Magellanic Cloud implies that a large fraction (i.e. 10--50%) of the mass of the galactic halo is composed of white dwarfs. We compare model white dwarf luminosity functions to the data from the observational surveys in order to determine a lower bound on the age of any substantial white dwarf halo population (and hence possibly on the age of the Universe). We compare various theoretical white dwarf luminosity functions, in which we vary hese three parameters, with the abovementioned survey results. From this comparison, we conclude that if white dwarfs do indeed constitute more than 10% of the local halo mass density, then the Universe must be at least 10 Gyr old for our most extreme allowed values of the parameters. When we use cooling curves that account for chemical fractionation and more likely values of the IMF and the bolometric correction, we find tighter limits: a white dwarf MACHO fraction of 10% (30%) requires a minimum age of 14 Gyr (15.5 Gyr). Our analysis also indicates that the halo white dwarfs almost certainly have helium-dominated atmospheres.Comment: Final version accepted for publication, straight TeX formate, 6 figs, 22 page

    A view of the narrow-line region in the infrared: active galactic nuclei with resolved fine-structure lines in the Spitzer archive

    Get PDF
    We queried the Spitzer archive for high-resolution observations with the Infrared Spectrograph of optically selected active galactic nuclei (AGN) for the purpose of identifying sources with resolved fine-structure lines that would enable studies of the narrow-line region (NLR) at mid-infrared wavelengths. By combining 298 Spitzer spectra with 6 Infrared Space Observatory spectra, we present kinematic information of the NLR for 81 z<=0.3 AGN. We used the [NeV], [OIV], [NeIII], and [SIV] lines, whose fluxes correlate well with each other, to probe gas photoionized by the AGN. We found that the widths of the lines are, on average, increasing with the ionization potential of the species that emit them. No correlation of the line width with the critical density of the corresponding transition was found. The velocity dispersion of the gas, sigma, is systematically higher than that of the stars, sigma_*, in the AGN host galaxy, and it scales with the mass of the central black hole, M_BH. Further correlations between the line widths and luminosities L, and between L and M_BH, are suggestive of a three dimensional plane connecting log(M_BH) to a linear combination of log(sigma) and log(L). Such a plane can be understood within the context of gas motions that are driven by AGN feedback mechanisms, or virialized gas motions with a power-law dependence of the NLR radius on the AGN luminosity. The M_BH estimates obtained for 35 type 2 AGN from this plane are consistent with those obtained from the M_BH-sigma_* relation.Comment: ApJ, revised to match the print versio
    corecore