141 research outputs found

    Submillimetre Transient Science in the Next Decade

    Get PDF
    White paper from the EAO Submillimetre Futures Meeting, 20-23 May 2019, Nanjing, ChinaThis white paper gives a brief summary of the time domain science that has been performed with the JCMT in recent years and highlights the opportunities for continuing work in this field over the next decade. The main focus of this document is the JCMT Transient Survey, a large program initiated in 2015 to measure the frequency and amplitude of variability events associated with protostars in nearby star-forming regions. After summarising the major accomplishments so far, an outline is given for extensions to the current survey, featuring a discussion on what will be possible with the new 850 micron camera that is expected to be installed in late 2022. We also discuss possible applications of submillimetre monitoring to active galactic nuclei, X-ray binaries, asymptotic giant branch stars, and flare stars.Science and Technology Facilities Counci

    Short Timescale Evolution of the Polarized Radio Jet during V404 Cygni's 2015 Outburst

    Full text link
    We present a high time resolution, multi-frequency linear polarization analysis of Very Large Array (VLA) radio observations during some of the brightest radio flaring (~1 Jy) activity of the 2015 outburst of V404 Cygni. The VLA simultaneously captured the radio evolution in two bands (each with two 1 GHz base-bands), recorded at 5/7 GHz and 21/26 GHz, allowing for a broadband polarimetric analysis. Given the source's high flux densities, we were able to measure polarization on timescales of ~13 minutes, constituting one of the highest temporal resolution radio polarimetric studies of a black hole X-ray binary (BHXB) outburst to date. Across all base-bands, we detect variable, weakly linearly polarized emission (<1%) with a single, bright peak in the time-resolved polarization fraction, consistent with an origin in an evolving, dynamic jet component. We applied two independent polarimetric methods to extract the intrinsic electric vector position angles and rotation measures from the 5 and 7 GHz base-band data and detected a variable intrinsic polarization angle, indicative of a rapidly evolving local environment or a complex magnetic field geometry. Comparisons to the simultaneous, spatially-resolved observations taken with the Very Long Baseline Array at 15.6 GHz, do not show a significant connection between the jet ejections and the polarization state.Comment: 24 pages, 9 figures, accepted by MNRA

    The black hole X-ray transient Swift J1357.2-0933 as seen with Swift and NuSTAR during its 2017 outburst

    Get PDF
    We report on observations of black hole Swift J1357.2–0933, a member of the modest population of very faint X-ray transients. This source has previously shown intense dips in the optical light curve, a phenomena that has been linked to the existence of a ‘unique toroidal structure’ in the inner region of the disc, seen at a high inclination. Our observations, carried out by the Neil Gehrels Swift and NuSTAR X-ray observatories, do not show the presence of intense dips in the optical light curves. We find that the X-ray light curves do not show any features that would straightforwardly support an edge-on configuration or high inclination configuration of the orbit. This is similar to what was seen in the X-ray observations of the source during its 2011 outburst. Moreover, the broad-band spectra were well described with an absorbed power-law model without any signatures of cut-off at energies above 10 keV, or any reflection from the disc or the putative torus. Thus, the X-ray data do not support the unique ‘obscuring torus’ scenario proposed for J1357. We also performed a multiwavelength study using the data of X-ray telescope and Ultraviolet/Optical Telescope aboard Swift, taken during the ∼4.5 months duration of the 2017 outburst. This is consistent with what was previously inferred for this source. We found a correlation between the simultaneous X-ray and ultraviolet/optical data and our study suggests that most of the reprocessed flux must be coming out in the ultraviolet.Publisher PDFPeer reviewe

    The MAVERIC Survey: A Red Straggler Binary with an Invisible Companion in the Galactic Globular Cluster M10

    Get PDF
    We present the discovery and characterization of a radio-bright binary in the Galactic globular cluster M10. First identified in deep radio continuum data from the Karl G. Jansky Very Large Array, M10-VLA1 has a flux density of 27 ± 4 μJy at 7.4 GHz and a flat-to-inverted radio spectrum. Chandra imaging shows an X-ray source with L X ≈ 1031 erg s−1 matching the location of the radio source. This places M10-VLA1 within the scatter of the radio-X-ray luminosity correlation for quiescent stellar-mass black holes, and a black hole X-ray binary is a viable explanation for this system. The radio and X-ray properties of the source disfavor, but do not rule out, identification as an accreting neutron star or white dwarf system. Optical imaging from the Hubble Space Telescope and spectroscopy from the SOAR telescope show that the system has an orbital period of 3.339 days and an unusual "red straggler" component: an evolved star found redward of the M10 red giant branch. These data also show UV/optical variability and double-peaked Hα emission characteristic of an accretion disk. However, SOAR spectroscopic monitoring reveals that the velocity semi-amplitude of the red straggler is low. We conclude that M10-VLA1 is most likely either a quiescent black hole X-ray binary with a rather face-on (i < 4°) orientation or an unusual flaring RS Canum Venaticorum variable-type active binary, and discuss future observations that could distinguish between these possibilities

    Polarimetry of binary systems: polars, magnetic CVs, XRBs

    Full text link
    Polarimetry provides key physical information on the properties of interacting binary systems, sometimes difficult to obtain by any other type of observation. Indeed, radiation processes such as scattering by free electrons in the hot plasma above accretion discs, cyclotron emission by mildly relativistic electrons in the accretion shocks on the surface of highly magnetic white dwarfs and the optically thin synchrotron emission from jets can be observed. In this review, I will illustrate how optical/near-infrared polarimetry allows one to estimate magnetic field strengths and map the accretion zones in magnetic Cataclysmic Variables as well as determine the location and nature of jets and ejection events in X-ray binaries.Comment: 26 pages, 16 figures; to be published in Astrophysics and Space Science Library 460, Astronomical Polarisation from the Infrared to Gamma Rays, Editors: Mignani, R., Shearer, A., S{\l}owikowska, A., Zane,

    First M87 Event Horizon Telescope Results. VII. Polarization of the Ring

    Get PDF
    In 2017 April, the Event Horizon Telescope (EHT) observed the near-horizon region around the supermassive black hole at the core of the M87 galaxy. These 1.3 mm wavelength observations revealed a compact asymmetric ring-like source morphology. This structure originates from synchrotron emission produced by relativistic plasma located in the immediate vicinity of the black hole. Here we present the corresponding linear-polarimetric EHT images of the center of M87. We find that only a part of the ring is significantly polarized. The resolved fractional linear polarization has a maximum located in the southwest part of the ring, where it rises to the level of similar to 15%. The polarization position angles are arranged in a nearly azimuthal pattern. We perform quantitative measurements of relevant polarimetric properties of the compact emission and find evidence for the temporal evolution of the polarized source structure over one week of EHT observations. The details of the polarimetric data reduction and calibration methodology are provided. We carry out the data analysis using multiple independent imaging and modeling techniques, each of which is validated against a suite of synthetic data sets. The gross polarimetric structure and its apparent evolution with time are insensitive to the method used to reconstruct the image. These polarimetric images carry information about the structure of the magnetic fields responsible for the synchrotron emission. Their physical interpretation is discussed in an accompanying publication

    Constraints on black-hole charges with the 2017 EHT observations of M87*

    Get PDF
    Our understanding of strong gravity near supermassive compact objects has recently improved thanks to the measurements made by the Event Horizon Telescope (EHT). We use here the M87* shadow size to infer constraints on the physical charges of a large variety of nonrotating or rotating black holes. For example, we show that the quality of the measurements is already sufficient to rule out that M87* is a highly charged dilaton black hole. Similarly, when considering black holes with two physical and independent charges, we are able to exclude considerable regions of the space of parameters for the doubly-charged dilaton and the Sen black holes
    • …
    corecore