131 research outputs found

    Results and interpretation of measurements of the light flux in the near-surface layer of the Venusian atmosphere

    Get PDF
    The characteristics of the field of radiation in the near surface layer of the atmosphere and on the surface of Venus are reported. Optical measurements made during the landing of the descent vehicles are described. The relief of the surface and the amount of dust on it are examined. The spectral relationship of the albedo of the soil and the light flux incident on the surface is discussed

    Olfactory transport efficiency of the amorphous and crystalline manganese oxide nanoparticles

    Get PDF
    The ability to deliver particulated xenobiotics and therapeutic drugs directly from the nasal cavity to the central nervous system, bypassing the hemato-encephalic barrier, determines a high importance of investigation of factors influencing this process. It was shown that the bioavailability of solid particles is influenced by their size and surface charge. At the same time, the impact of a crystal structure (crystalline/amorphous) has been poorly investigated. In this study, using sexually mature male C57BL/6J mice, we analyzed the efficiency of the nose-to-brain transport of crystalline and amorphous manganese oxide nanoparticles. T1-weighted magnetic resonance imaging (MRI) was used to evaluate the accumulation of manganese nanoparticles in olfactory bulb (OB) and olfactory epithelium (OE). So, it has been established that amorphous particles have higher accumulation rate in OE and OB in comparison with crystalline particles after their intranasal administration. The unequal ability of amorphous and crystalline particles to overcome the mucosal layer covering the OE may be one of the possible reasons for the different nose-to-brain transport efficiency of particulated matter. Indeed, the introduction of mucolytic (dithiothreitol) 20 minutes prior to intranasal particle application did not influence the accumulation of amorphous particles in OE and OB, but enhanced the efficiency of crystalline nanoparticle entry. Data on the different intake of amorphous and crystalline nanoparticles from the nasal cavity to the brain, as well as the evidence for the key role of the mucosal layer in differentiating the penetrating power of these particles will be useful in developing approaches to assessing air pollution and optimizing the methods of inhalation therapy

    Study of the neuronal response to olfactory stimuli in control and LPS-stimulated mice by functional magnetic resonance imaging

    Get PDF
    Olfactory perception plays the key role in the inter­action of animals with biotic factors of the species-specific econiche. Identification of odorants informs nocturnal animals about social environment, presence of predators, or infected food. Olfactory efficiency depends on physiological conditions; in particular, odor sensitivity can be changed by infection. This work considers use of fMRI in the study of the influence of innate immunity activation on neuronal response during perception and differentiation of socially significant (2.5-dimethylpyrazine, 2-heptanon) and socially insignificant (1-hexanol and isoprene) olfactory stimuli by CD-1 mice. We stimulated innate immunity by intraperitoneal injection of bacterial lipopolysaccharide (LPS) at the dose 500 µg/kg three hours before tomography. Urethane anesthesia was used during MRI trail. Odor stimulation was done with a lab-made metering unit for supplying standard doses of volatile organic compounds. The supply of olfactory stimuli induced activation of neurons in the primary perceptual center and the centers of secondary processing of olfactory information. Olfactory stimulus type affected neuronal response rate in an olfactory bulb but did not affect response parameters in other brain regions studied. This increase in neuronal activity is likely to be of adaptive significance as a mechanism supporting olfactory sensitivity increase, which plays the key role in the identification of potential sources of infection

    GC-based chemoprofile of lipophilic compounds in Altaian Ganoderma lucidum sample

    Get PDF
    The presented data contains information about component composition of lipophilic compounds in Ganoderma lucidum fungal body sample obtained using gas chromatography and subsequent mass spectrometry

    Magnetic resonance spectroscopy of hippocampal and striatal neurometabolites in experimental PTSD rat modeling

    Get PDF
    The spectrum of the metabolites in the dorsal region of the hippocampus and striatum was studied using the method of 1H magnetic resonance spectroscopy at experimental modeling of the posttraumatic stress disorder syndrome (PTSD) in rats. PTSD was reproduced by exposure of the cat cue to rats daily along 10 day by 10 minutes at once. The anxiety level of animals was estimated 12 days later after the end of the experimental series of stress. Based on the anxiety index, the rats were divided into 3 phenotypes. The animals with an anxiety index > 0.8 (group 1) had lower plasma corticosterone compared with rats form the control group. In animals with an anxiety index in the range 0.7–0.8 (group 2), an elevated corticosterone level was noted. The rats with an anxiety index < 0.7 (group 3) had a lower plasma corticosterone level compared with animals from the control group. Rats of group 2 were characterized by an increased level of GABA in the hippocampus compared with controls. In the remaining groups, the percentages of GABA in the hippocampus and striatum did not differ significantly from the control. The distribution of NAA differed form that of GABA. The highest level of NAA was found in the striatum for rats from group 1, whereas NAA in animals form groups 1 or 3 did not differ from the control. The NAA level in the hippocampus was similar between all groups, including the control. The results obtained indicate that multiple exposures to psychological stress associated with the sense of proximity of a natural enemy in some animals cause an anxiolytic reaction. These animals are characterized by a stable corticosterone level and a stable level of neurometabolites in the studied structures of the brain. For rats with the highest level of anxiety, a lowered level of corticosterone with a constant level of neurometabolites in the hippocampus and striatum is characteristic. And only in rats with an intermediate level of anxiety, synchronization was observed between the increase in plasma corticosterone and the increase in hippocampal GABA content. The results obtained are in good agreement with the ideas of the protective action of glucocorticoids under PTSD manifested in  restraining violations of the psycho-physiological status. The mate rials allow the neurobiological mechanisms of the protective action of glucocorticoids to be detailed

    Anxiety and neurometabolite levels in the hippocampus and amygdala after prolonged exposure to predator-scent stress

    Get PDF
    Here, to study the relationship between anxiety levels with changes in the neurometabolic profile in the hippocampus and amygdala, an experimental predator stress model was reproduced in which Sprague-Dawley rats were exposed to cat urine for 10 minutes on a daily basis for 10 days. At the time of presentation of the stimulus, an online survey of behavioral reactions was conducted. Fear, aggressiveness, avoidance of stimulus and grooming were recorded. Fourteen days after the completion of the last stress exposure, the total level of anxiety was determined in the test of the“cross maze”. Using the method of in vivo NMR spectroscopy, the content of neurometabolites was determined in the hippocampus and in the amygdala. According to the peculiarities of behavioral reactions to a stressor, animals were retrospectively divided into two phenotypes. The first phenotype used a passive behavioral strategy, and the second phenotype was active. In animals of the first phenotype, the indicators of anxiety behavior remained at the control level. In animals of the second phenotype, a decrease in anxiety was observed. Animals of the second phenotype showed elevated levels of lactate in the hippocampus compared to animals of the first phenotype, and the lowest N-acetylaspartate levels significantly differed from those in the control and the first phenotype animals. In the amygdala, in animals of the second phenotype, the content of taurine is sharply reduced in comparison with those in the control and the animals of the first phenotype. Thus, the results obtained indicate a relationship of post-stress changes in anxiety, with the peculiarities of the behavioral reactions presented at the moment of the immediate action of the stressor. Among the hippocampal and amygdala neurometabolites, the most informative for the characterization of the anxiolytic action of the predator stress are identified

    Aging Studies for the Large Honeycomb Drift Tube System of the Outer Tracker of HERA-B

    Full text link
    The HERA-B Outer Tracker consists of drift tubes folded from polycarbonate foil and is operated with Ar/CF4/CO2 as drift gas. The detector has to stand radiation levels which are similar to LHC conditions. The first prototypes exposed to radiation in HERA-B suffered severe radiation damage due to the development of self-sustaining currents (Malter effect). In a subsequent extended R&D program major changes to the original concept for the drift tubes (surface conductivity, drift gas, production materials) have been developed and validated for use in harsh radiation environments. In the test program various aging effects (like Malter currents, gain loss due to anode aging and etching of the anode gold surface) have been observed and cures by tuning of operation parameters have been developed.Comment: 14 pages, 6 figures, to be published in the Proceedings of the International Workshop On Aging Phenomena In Gaseous Detectors, 2-5 Oct 2001, Hamburg, German

    The Outer Tracker Detector of the HERA-B Experiment Part I: Detector

    Full text link
    The HERA-B Outer Tracker is a large system of planar drift chambers with about 113000 read-out channels. Its inner part has been designed to be exposed to a particle flux of up to 2.10^5 cm^-2 s^-1, thus coping with conditions similar to those expected for future hadron collider experiments. 13 superlayers, each consisting of two individual chambers, have been assembled and installed in the experiment. The stereo layers inside each chamber are composed of honeycomb drift tube modules with 5 and 10 mm diameter cells. Chamber aging is prevented by coating the cathode foils with thin layers of copper and gold, together with a proper drift gas choice. Longitudinal wire segmentation is used to limit the occupancy in the most irradiated detector regions to about 20 %. The production of 978 modules was distributed among six different laboratories and took 15 months. For all materials in the fiducial region of the detector good compromises of stability versus thickness were found. A closed-loop gas system supplies the Ar/CF4/CO2 gas mixture to all chambers. The successful operation of the HERA-B Outer Tracker shows that a large tracker can be efficiently built and safely operated under huge radiation load at a hadron collider.Comment: 28 pages, 14 figure

    The Outer Tracker Detector of the HERA-B Experiment. Part II: Front-End Electronics

    Full text link
    The HERA-B Outer Tracker is a large detector with 112674 drift chamber channels. It is exposed to a particle flux of up to 2x10^5/cm^2/s thus coping with conditions similar to those expected for the LHC experiments. The front-end readout system, based on the ASD-8 chip and a customized TDC chip, is designed to fulfil the requirements on low noise, high sensitivity, rate tolerance, and high integration density. The TDC system is based on an ASIC which digitizes the time in bins of about 0.5 ns within a total of 256 bins. The chip also comprises a pipeline to store data from 128 events which is required for a deadtime-free trigger and data acquisition system. We report on the development, installation, and commissioning of the front-end electronics, including the grounding and noise suppression schemes, and discuss its performance in the HERA-B experiment
    corecore