61 research outputs found
Optogenetic manipulation of medullary neurons in the locust optic lobe
The locust is a widely used animal model for studying sensory processing and its relation to behavior. Due to the lack of genomic information, genetic tools to manipulate neural circuits in locusts are not yet available. We examined whether Semliki Forest virus is suitable to mediate exogenous gene expression in neurons of the locust optic lobe. We subcloned a channelrhodopsin variant and the yellow fluorescent protein Venus into a Semliki Forest virus vector and injected the virus into the optic lobe of locusts (Schistocerca americana). Fluorescence was observed in all injected optic lobes. Most neurons that expressed the recombinant proteins were located in the first two neuropils of the optic lobe, the lamina and medulla. Extracellular recordings demonstrated that laser illumination increased the firing rate of medullary neurons expressing channelrhodopsin. The optogenetic activation of the medullary neurons also triggered excitatory postsynaptic potentials and firing of a postsynaptic, looming-sensitive neuron, the lobula giant movement detector. These results indicate that Semliki Forest virus is efficient at mediating transient exogenous gene expression and provides a tool to manipulate neural circuits in the locust nervous system and likely other insects
Optogenetic manipulation of medullary neurons in the locust optic lobe
The locust is a widely used animal model for studying sensory processing and its relation to behavior. Due to the lack of genomic information, genetic tools to manipulate neural circuits in locusts are not yet available. We examined whether Semliki Forest virus is suitable to mediate exogenous gene expression in neurons of the locust optic lobe. We subcloned a channelrhodopsin variant and the yellow fluorescent protein Venus into a Semliki Forest virus vector and injected the virus into the optic lobe of locusts (Schistocerca americana). Fluorescence was observed in all injected optic lobes. Most neurons that expressed the recombinant proteins were located in the first two neuropils of the optic lobe, the lamina and medulla. Extracellular recordings demonstrated that laser illumination increased the firing rate of medullary neurons expressing channelrhodopsin. The optogenetic activation of the medullary neurons also triggered excitatory postsynaptic potentials and firing of a postsynaptic, looming-sensitive neuron, the lobula giant movement detector. These results indicate that Semliki Forest virus is efficient at mediating transient exogenous gene expression and provides a tool to manipulate neural circuits in the locust nervous system and likely other insects
Imbedding HACCP principles in dairy herd health and production management: case report on calf rearing
Driven by consumer demands, European legislation has suggested the use of HACCP (Hazard Analysis Critical Control Point) as the quality risk management programme for the whole dairy chain. Until now, an exception has been made for primary producers, but as regulations evolve, on-farm HACCP-like programmes should be ready to assure food safety as well as animal health and animal welfare. In our field experiment, the HACCP-concept was used to combine both optimal farm management and formalisation of quality assurance in an on-farm situation in the Netherlands. The process of young stock rearing was chosen, since its importance for the future of the farm is often underestimated. Hazards and their associated risk factors can be controlled within the farm-specific standards and tolerances, as targets can be controlled by corrective measures and by implementation of farm-specific worksheets. The veterinarian is pivotal for the facility-based HACCP team, since he/she has knowledge about on-farm risk assessment and relations between clinical pathology, feed and farm management. The HACCP concept in combination with veterinary herd health and production management programmes offers a promising approach to optimise on-farm production processes (i.e., young stock rearing) in addition to a structural approach for quality risk management on dairy farms
Origins Space Telescope: Baseline mission concept
The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid-and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20 μm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588 μm, making wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins\u27 natural background-limited sensitivity
The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report
The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument
The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report
The Habitable Exoplanet Observatory, or HabEx, has been designed to be the
Great Observatory of the 2030s. For the first time in human history,
technologies have matured sufficiently to enable an affordable space-based
telescope mission capable of discovering and characterizing Earthlike planets
orbiting nearby bright sunlike stars in order to search for signs of
habitability and biosignatures. Such a mission can also be equipped with
instrumentation that will enable broad and exciting general astrophysics and
planetary science not possible from current or planned facilities. HabEx is a
space telescope with unique imaging and multi-object spectroscopic capabilities
at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities
allow for a broad suite of compelling science that cuts across the entire NASA
astrophysics portfolio. HabEx has three primary science goals: (1) Seek out
nearby worlds and explore their habitability; (2) Map out nearby planetary
systems and understand the diversity of the worlds they contain; (3) Enable new
explorations of astrophysical systems from our own solar system to external
galaxies by extending our reach in the UV through near-IR. This Great
Observatory science will be selected through a competed GO program, and will
account for about 50% of the HabEx primary mission. The preferred HabEx
architecture is a 4m, monolithic, off-axis telescope that is
diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two
starlight suppression systems: a coronagraph and a starshade, each with their
own dedicated instrument.Comment: Full report: 498 pages. Executive Summary: 14 pages. More information
about HabEx can be found here: https://www.jpl.nasa.gov/habex
Origins Space Telescope: baseline mission concept
The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid- and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20 μm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588 μm, making wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins’ natural background-limited sensitivity
Why Monday comes before Tuesday: the role of a non-deictic conceptualiser
‘Time-Reference-Point' (time-RP) relations (Núñez & Sweetser, 2006) such as The Second World War followed the Depression do not involve a deictic ego. They do however involve a necessary defining role for a non-deictic conceptualiser that moves along the temporal pathway in a prescribed direction from earlier to later. Recognising the role of this implicit conceptualiser, which defines the directionality built into the temporal domain, allows us to unite the wide variety of particular temporal construals into a single, remarkably coherent domain. These construals reflect whether the conceptual perspective is linked to deictic ‘now' (Ego-Reference-Point relations (Ego-RP)), whether the conceptual perspective is in time or outside of time, whether an external perspective is distal enough to afford a synoptic view of the profiled times simultaneously, and whether the times are construed to be engaged in fictive motion relative to the conceptual perspective. Particular attention is paid to the use of the verb come even with time-RP relations. Southern African Linguistics and Applied Language Studies 2007, 25(3): 291–30
- …