2,307 research outputs found
Signal Transmission Across Tile Assemblies: 3D Static Tiles Simulate Active Self-Assembly by 2D Signal-Passing Tiles
The 2-Handed Assembly Model (2HAM) is a tile-based self-assembly model in
which, typically beginning from single tiles, arbitrarily large aggregations of
static tiles combine in pairs to form structures. The Signal-passing Tile
Assembly Model (STAM) is an extension of the 2HAM in which the tiles are
dynamically changing components which are able to alter their binding domains
as they bind together. For our first result, we demonstrate useful techniques
and transformations for converting an arbitrarily complex STAM tile set
into an STAM tile set where every tile has a constant, low amount of
complexity, in terms of the number and types of ``signals'' they can send, with
a trade off in scale factor.
Using these simplifications, we prove that for each temperature
there exists a 3D tile set in the 2HAM which is intrinsically universal for the
class of all 2D STAM systems at temperature (where the STAM does
not make use of the STAM's power of glue deactivation and assembly breaking, as
the tile components of the 2HAM are static and unable to change or break
bonds). This means that there is a single tile set in the 3D 2HAM which
can, for an arbitrarily complex STAM system , be configured with a
single input configuration which causes to exactly simulate at a scale
factor dependent upon . Furthermore, this simulation uses only two planes of
the third dimension. This implies that there exists a 3D tile set at
temperature in the 2HAM which is intrinsically universal for the class of
all 2D STAM systems at temperature . Moreover, we show that for each
temperature there exists an STAM tile set which is intrinsically
universal for the class of all 2D STAM systems at temperature ,
including the case where .Comment: A condensed version of this paper will appear in a special issue of
Natural Computing for papers from DNA 19. This full version contains proofs
not seen in the published versio
Chiral symmetry and quantum hadro-dynamics
Using the linear sigma model, we study the evolutions of the quark condensate
and of the nucleon mass in the nuclear medium. Our formulation of the model
allows the inclusion of both pion and scalar-isoscalar degrees of freedom. It
guarantees that the low energy theorems and the constrains of chiral
perturbation theory are respected. We show how this formalism incorporates
quantum hadro-dynamics improved by the pion loops effects.Comment: 24 pages, 2 figure
Engagement in a Community-Based Integral Practice Program Enhances Well-being
This project examined associations between engagement in a community-based integral practice program and measures of health and well-being. In this prospective withinsubjects uncontrolled cohort study, 53 participants of Integral Transformative Practice (ITP), a program that incorporates movement, nutritional and exercise recommendations, affirmations, contemplative introspection, theory and philosophy, and group discussions and activities, were followed over one year. Participants completed online questionnaires upon enrollment, at six months, and one year later. Repeated measures analyses showed that participants reported improved overall health and reduced symptoms of ill health, as well as increased psychological well-being, vitality, and quality of life over the course of the year. Greater involvement in the practice community predicted better psychological well-being, increased quality of life, and greater self-transcendence. Self-transcendence mediated the relationship between level of ITP involvement and psychological well-being outcomes, and predicted physical health outcomes, suggesting that this construct may be important to the effectiveness of participating in wellness interventions
Synthesis of hollow vaterite CaCO(3) microspheres in supercritical carbon dioxide medium
We here describe a rapid method for synthesizing hollow core, porous crystalline calcium carbonate microspheres composed of vaterite using supercritical carbon dioxide in aqueous media, without surfactants. We show that the reaction in alkaline media rapidly conducts to the formation of microspheres with an average diameter of 5 mu m. SEM, TEM and AFM observations reveal that the microspheres have a hollow core of around 0.7 mu m width and are composed of nanograins with an average diameter of 40 nm. These nanograins are responsible for the high specific surface area of 16 m(2) g(-1) deduced from nitrogen absorption/desorption isotherms, which moreover confers an important porosity to the microspheres. We believe this work may pave the way for the elaboration of a biomaterial with a large potential for therapeutic as well as diagnostic applications
Linac modeling for external beam radiotherapy quality assurance using a dedicated 2D pixelated detector
International audienceQuality assurance is a key issue in intensity modulated radiotherapy. Errors can occur in the dose delivery process induces significant differences between the planned treatment and the delivered one. In this context, the Medical Application Physics group of the LPSC is developing TraDeRa (Transparent Detector for Radiotherapy), a 2D pixelated matrix of ionization chambers located upstream to the patient. The signal map obtained with TraDeRa has to be processed to provide medical observables to quantify the quality of the treatment delivery. This relies on accurate Monte Carlo simulations benchmarked with measurements performed under a linear accelerator (Linac).The work described in this paper lies in the optimization of the Linac head simulation and the development of an innovative Monte Carlo/measurements comparison method to perform an accurate enough model of the X-ray production device. An optimized parametrization of the particles transport allowed an increase of the simulation efficiency by a factor 3. The characteristics of an electron beam of a reference Linac were matched with the simulation results by using dose deposition of the created X-ray beam in a water tank. Two parameters are particularly critical: the nominal energy of the electrons and the radial distribution of impact on the target. The innovative method was able to provide within minutes those two parameters for any Linac, achieving, for example, a 10 keV precision on the energy determination for a 6 MV operating Linac
Neutron production by cosmic-ray muons at shallow depth
The yield of neutrons produced by cosmic ray muons at a shallow depth of 32
meters of water equivalent has been measured. The Palo Verde neutrino detector,
containing 11.3 tons of Gd loaded liquid scintillator and 3.5 tons of acrylic
served as a target. The rate of one and two neutron captures was determined.
Modeling the neutron capture efficiency allowed us to deduce the total yield of
neutrons neutrons per muon
and g/cm. This yield is consistent with previous measurements at similar
depths.Comment: 12 pages, 3 figure
The Coxsackievirus B 3Cpro Protease Cleaves MAVS and TRIF to Attenuate Host Type I Interferon and Apoptotic Signaling
The host innate immune response to viral infections often involves the activation of parallel pattern recognition receptor (PRR) pathways that converge on the induction of type I interferons (IFNs). Several viruses have evolved sophisticated mechanisms to attenuate antiviral host signaling by directly interfering with the activation and/or downstream signaling events associated with PRR signal propagation. Here we show that the 3Cpro cysteine protease of coxsackievirus B3 (CVB3) cleaves the innate immune adaptor molecules mitochondrial antiviral signaling protein (MAVS) and Toll/IL-1 receptor domain-containing adaptor inducing interferon-beta (TRIF) as a mechanism to escape host immunity. We found that MAVS and TRIF were cleaved in CVB3-infected cells in culture. CVB3-induced cleavage of MAVS and TRIF required the cysteine protease activity of 3Cpro, occurred at specific sites and within specialized domains of each molecule, and inhibited both the type I IFN and apoptotic signaling downstream of these adaptors. 3Cpro-mediated MAVS cleavage occurred within its proline-rich region, led to its relocalization from the mitochondrial membrane, and ablated its downstream signaling. We further show that 3Cpro cleaves both the N- and C-terminal domains of TRIF and localizes with TRIF to signalosome complexes within the cytoplasm. Taken together, these data show that CVB3 has evolved a mechanism to suppress host antiviral signal propagation by directly cleaving two key adaptor molecules associated with innate immune recognition
A Markovian event-based framework for stochastic spiking neural networks
In spiking neural networks, the information is conveyed by the spike times,
that depend on the intrinsic dynamics of each neuron, the input they receive
and on the connections between neurons. In this article we study the Markovian
nature of the sequence of spike times in stochastic neural networks, and in
particular the ability to deduce from a spike train the next spike time, and
therefore produce a description of the network activity only based on the spike
times regardless of the membrane potential process.
To study this question in a rigorous manner, we introduce and study an
event-based description of networks of noisy integrate-and-fire neurons, i.e.
that is based on the computation of the spike times. We show that the firing
times of the neurons in the networks constitute a Markov chain, whose
transition probability is related to the probability distribution of the
interspike interval of the neurons in the network. In the cases where the
Markovian model can be developed, the transition probability is explicitly
derived in such classical cases of neural networks as the linear
integrate-and-fire neuron models with excitatory and inhibitory interactions,
for different types of synapses, possibly featuring noisy synaptic integration,
transmission delays and absolute and relative refractory period. This covers
most of the cases that have been investigated in the event-based description of
spiking deterministic neural networks
- …