97 research outputs found
Identification of chosen apoptotic (TIAR and TIA-1) markers expression in thyroid tissues from adolescents with immune and non-immune thyroid diseases.
The aim of this study was to estimate sodium iodide symporter (NIS) and thyroid peroxidase (TPO) expression in thyrocytes from patients with GD and no-toxic multinodular goitre (NTMG) in relationship with apoptotic (TIAR and TIA-1) markers. The investigation was performed on thyroid cells isolated from postoperation thyroid tissues from 15 patients aged 12-21 years old with GD and 15 cases aged 13-21 years old with NTMG. Detection of NIS and TPO was performed by immunohistochemistry. Analysis of apoptotic markers in thyroid tissues was performed using antibodies to TIAR and TIA-1 by Western Blot and immunohistochemistry. Identification of proapoptotic TIAR and TIA-1 molecules in the thyroid tissues revealed a higher expression of both proteins in patients with Graves' disease (+++; +, respectively) in comparison to patients with NTNG (+; 0). In addition, TIAR expression was detected in three bands [p50, p42, p38 (kDa)] and TIA-1 in two bands [p22, p17 (kDa)]. using Western Blot test in patients with thyroid autoimmune diseases. In patients with NTNG expression of both apoptotic proteins was lower and identified in single bands: 42 (kDa) for TIAR and 17 (kDa) for TIA-1. The analysis of expression of NIS and TPO in thyroid follicular cells was higher in patients with Graves' disease in compared to their detection in patients with NTMG. In addition, degree of thyroid antigen expression positive correlated with amount of proapoptotic markers (TIAR,
Is there loss or qualitative changes in the expression of thyroid peroxidase protein in thyroid epithelial cancer?
There is disagreement concerning the expression of thyroid peroxidase (TPO) in thyroid cancer, some studies finding qualitative as well as quantitative differences compared to normal tissue. To investigate TPO protein expression and its antigenic properties, TPO was captured from a solubilizate of thyroid microsomes by a panel of murine anti-TPO monoclonal antibodies and detected with a panel of anti-human TPO IgGÎș Fab. TPO protein expression in 30 samples of malignant thyroid tissue was compared with TPO from adjacent normal tissues. Virtual absence of TPO expression was observed in 8 cases. In the remaining 22 malignant thyroid tumours the TPO protein level varied considerably from normal to nearly absent when compared to normal thyroid tissue or tissues from patients with Graves' disease (range less than 0.5 to more than 12.5âÎŒg mgâ1 of protein). When expressed TPO displayed similar epitopes, to that of TPO from Graves' disease tissue. The results obtained by the TPO capturing method were confirmed by SDS-PAGE and Western blot analysis with both microsomes and their solubilizates. The present results show that in about two-thirds of differentiated thyroid carcinomas, TPO protein is expressed, albeit to a more variable extent than normal; when present, TPO in malignant tissues is immunologically normal. © 2001 Cancer Research Campaignhttp://www.bjcancer.co
Human recombinant anti-thyroperoxidase autoantibodies: in vitro cytotoxic activity on papillary thyroid cancer expressing TPO
International audienceBACKGROUND: Thyroid cancers are difficult to treat due to their limited responsiveness to chemo- and radiotherapy. There is thus a great interest in and a need for alternative therapeutic approaches. RESULTS: We studied the cytotoxic activity of anti-thyroperoxidase autoantibodies (anti-TPO aAbs, expressed in baculovirus/insect cell (B4) and CHO cells (B4') or purified from patients' sera) against a papillary thyroid cancer (NPA) cell line. Anti-TPO aAbs from patients' sera led to a partial destruction of NPA cell line by complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC) and exhibited an anti-proliferative activity. Comparison of the cytotoxic activity of anti-TPO aAbs shows that B4' induced an anti-proliferative effect and a better ADCC than B4, but a lower one than anti-TPO aAbs from patients' sera. Antibody-dependent cell-mediated cytotoxicity was increased when human peripheral blood mononuclear cells were used as effector cells, suggesting that FcgammaRs, CD64, CD32 and CD16 are involved. Indeed, anti-TPO aAbs from patients' sera, but not B4 and B4', exhibited CDC activity. CONCLUSIONS: These data indicate that anti-TPO aAbs display moderate ADCC and anti-proliferative activities on NPA cells; IgG glycosylation appears to be important for cytotoxic activity and ADCC efficiency depends on FcgammaR-bearing cells. Finally, recombinant human anti-TPO aAbs cannot yet be considered as an optimal tool for the development of a novel therapeutic approach for thyroid cancer
Humanized medium (h7H) allows long-term primary follicular thyroid cultures from human normal thyroid, benign neoplasm, and cancer
Mechanisms of thyroid physiology and cancer are principally studied in follicular cell lines. However, human thyroid cancer lines were found to be heavily contaminated by other sources, and only one supposedly normal-thyroid cell line, immortalized with SV40 antigen, is available. In primary culture, human follicular cultures lose their phenotype after passage. We hypothesized that the loss of the thyroid phenotype could be related to culture conditions in which human cells are grown in medium optimized for rodent culture, including hormones with marked differences in its affinity for the relevant rodent/human receptor.|The objective of the study was to define conditions that allow the proliferation of primary human follicular thyrocytes for many passages without losing phenotype.|Concentrations of hormones, transferrin, iodine, oligoelements, antioxidants, metabolites, and ethanol were adjusted within normal homeostatic human serum ranges. Single cultures were identified by short tandem repeats. Human-rodent interspecies contamination was assessed.|We defined an humanized 7 homeostatic additives medium enabling growth of human thyroid cultures for more than 20 passages maintaining thyrocyte phenotype. Thyrocytes proliferated and were grouped as follicle-like structures; expressed Na+/I- symporter, pendrin, cytokeratins, thyroglobulin, and thyroperoxidase showed iodine-uptake and secreted thyroglobulin and free T3. Using these conditions, we generated a bank of thyroid tumors in culture from normal thyroids, Grave's hyperplasias, benign neoplasms (goiter, adenomas), and carcinomas.|Using appropriate culture conditions is essential for phenotype maintenance in human thyrocytes. The bank of thyroid tumors in culture generated under humanized humanized 7 homeostatic additives culture conditions will provide a much-needed tool to compare similarly growing cells from normal vs pathological origins and thus to elucidate the molecular basis of thyroid disease.Ministerio de Ciencia e InnovaciĂłnInstituto de Salud Carlos IIIXunta de GaliciaFondo Social Europeo of the European Communit
Expression of pendrin in benign and malignant human thyroid tissues
The Pendred syndrome gene (PDS) encodes a transmembrane protein, pendrin, which is expressed in follicular thyroid cells and participates in the apical iodide transport. Pendrin expression has been studied in various thyroid neoplasms by means of immunohistochemistry (IHC), Western blot and RTâquantitative real-time PCR. The expression was related to the functional activity of the thyroid tissue. Follicular cells of normal, nodular goitre and Graves' disease tissues express pendrin at the apical pole of the thyrocytes. In follicular adenomas, pendrin was detected in cell membranes and cytoplasm simultaneously in 10 out of 15 cases. Pendrin protein was detected in 73.3 and 76.7% of the follicular (FTC) and papillary (PTC) thyroid carcinomas, respectively, where pendrin was solely localised inside the cytoplasm. An extensive intracellular immunostaining of pendrin was observed in six out of 11 (54.5%) of positive FTCs and 19 out of 23 (82%) of PTCs. Focal reactivity was detected in one follicular- and three papillary carcinomas, whereas pendrin protein was absent in three of 15 FTC and four of 30 PTC; mRNA of pendrin was detected in 92.4% of thyroid tumours. The relative mRNA expression of pendrin was lower in cancers than in normal thyroid tissues (P<0.001). The pendrin protein level was found to parallel its mRNA expression, which was not, however, related to the tumour size and tumour stage. In conclusion, pendrin is expressed in the majority of differentiated thyroid tumours with high individual variability but its targeting to the apical cell membrane is affected
NrCAM, a neuronal system cell-adhesion molecule, is induced in papillary thyroid carcinomas
NrCAM (neuron-glia-related cell-adhesion molecule) is primarily, although not solely, expressed in the nervous system. In the present study, NrCAM expression was analysed in a series (46) of papillary thyroid carcinomas (PTCs) and paired normal tissues (NT). Quantitative reverse transcriptase (QRT)-PCR revealed that NrCAM expression was upregulated in all PTCs compared to normal thyroid, whatever the stage or size of the primary tumour. NrCAM transcript levels were 1.3- to 30.7-fold higher in PTCs than in NT. Immunohistochemistry (IHC) confirmed that the expression of NrCAM was considerably higher in tumours (score 2+/3+) than in adjacent normal paratumoural thyroid tissue. The NrCAM protein was detected in all but three (93.3%) PTC samples, and it was mainly cytoplasmic; in some cases there was additional membranous localisation â basolateral and partly apical. In the normal thyroid and tissues surrounding tumours, focal NrCAM immunolabelling was seen only in follicles containing tall cells, where staining was restricted to the apical pole of thyrocytes. Western blot analysis corroborated the QRTâPCR and IHC results, showing higher NrCAM protein levels in PTCs than in paired NT. The level of overexpression of the NrCAM mRNA in tumourous tissue appeared to be independent of the primary tumour stage (pT) or the size of the PTC. These data provide the first evidence that NrCAM is overexpressed in human PTCs at the mRNA and protein levels, whatever the tumour stage. Thus, the induction and upregulation of NrCAM expression could be implicated in the pathogenesis and behaviour of papillary thyroid cancers
NRCAM (neuronal cell adhesion molecule)
Review on NRCAM (neuronal cell adhesion molecule), with data on DNA, on the protein encoded, and where the gene is implicated
MoĆŒliwoĆci wykorzystania penicylinazo-dodatnich szczepĂłw rodzaju Micrococcus w technologii fermentowanych produktĂłw mleczarskich. III. PrĂłba zastosowania penicylinazo-dodatnich szczepĂłw rodzaju Micrococcus w produkcji jogurtu
Two penicillinase-producing Micrococcus strains were used in producing yoghurt from milk containing 0.3 IU penicillin/cmÂł. Favourable effects were obtained using Micrococcus sp. 26 p.PodjÄto prĂłbÄ otrzymania jogurtu z mleka zawierajÄ
cego 0,3 j.m. penicylny/cmÂł przy zastosowaniu wyselekcjonowanych penicylinazo-dodatnich szczepĂłw mikrokokĂłw. Przy uĆŒyciu szczepu 26p skrzep powstawaĆ z opĂłĆșnieniem (1-1,5 h) w porĂłwnaniu z jogurtem kontrolnym (bez penicyliny), jednak ocena organoleptyczna wykazaĆa wysokÄ
jakoĆÄ obydwĂłch jogurtĂłw. Nie stwierdzono istotnych rĂłĆŒnic w przemianach zwiÄ
zkĂłw azotowych, zachodzÄ
cych podczas 7-dniowego przechowywania. ZawartoĆÄ azotu niebiaĆkowego wzrastaĆa podczas przetrzymywania jogurtĂłw w niskiej temperaturze z O, 196 do 0,372% (jogurt kontrolny) oraz z 0,235 do 0,425% (jogurt wyprodukowany z mleka zawierajÄ
cego penicylinÄ z zastosowaniem szczepu Micrococcus sp. 26p). Nie wystÄpowaĆy rĂłwnieĆŒ rĂłĆŒnice w skĆadzie jakoĆciowym aminokwasĂłw. Drugi, aktywnie rozkĆadajÄ
cy penicylinÄ szczep Micrococcus sp. 64p okazaĆ siÄ nieprzydatny w produkcji jogurtu ze wzglÄdu na 5 h opĂłĆșnienie w powstawaniu skrzepu oraz obniĆŒenie wartoĆci smakowej gotowego produktu
- âŠ