109 research outputs found

    Anomalously large g-factor of single atoms adsorbed on a metal substrate

    Get PDF
    We have performed inelastic scanning tunneling spectroscopy (ISTS) on individual Fe atoms adsorbed on a Ag(111) surface. ISTS reveals a magnetization excitation with a lifetime of about 400 fsec which decreases linearly upon application of a magnetic field. Astoundingly, we find that the g-factor, which characterizes the shift in energy of the excitation in a magnetic field, is g = 3.1 instead of the regular value of 2. This enhancement can be understood when considering the complete electronic structure of both the Ag(111) surface state and the Fe atom, as shown by ab initio calculations of the magnetic susceptibility.Comment: 11 pages, 3 figure

    Thermally activated magnetization reversal in monoatomic magnetic chains on surfaces studied by classical atomistic spin-dynamics simulations

    Full text link
    We analyze the spontaneous magnetization reversal of supported monoatomic chains of finite length due to thermal fluctuations via atomistic spin-dynamics simulations. Our approach is based on the integration of the Landau-Lifshitz equation of motion of a classical spin Hamiltonian at the presence of stochastic forces. The associated magnetization lifetime is found to obey an Arrhenius law with an activation barrier equal to the domain wall energy in the chain. For chains longer than one domain-wall width, the reversal is initiated by nucleation of a reversed magnetization domain primarily at the chain edge followed by a subsequent propagation of the domain wall to the other edge in a random-walk fashion. This results in a linear dependence of the lifetime on the chain length, if the magnetization correlation length is not exceeded. We studied chains of uniaxial and tri-axial anisotropy and found that a tri-axial anisotropy leads to a reduction of the magnetization lifetime due to a higher reversal attempt rate, even though the activation barrier is not changed.Comment: 2nd version contains some improvements and new Appendi

    Dynamical locality of the nonminimally coupled scalar field and enlarged algebra of Wick polynomials

    Full text link
    We discuss dynamical locality in two locally covariant quantum field theories, the nonminimally coupled scalar field and the enlarged algebra of Wick polynomials. We calculate the relative Cauchy evolution of the enlarged algebra, before demonstrating that dynamical locality holds in the nonminimally coupled scalar field theory. We also establish dynamical locality in the enlarged algebra for the minimally coupled massive case and the conformally coupled massive case.Comment: 39p

    Experimental animal models of coronary microvascular dysfunction

    Get PDF
    Coronary microvascular dysfunction (CMD) is commonly present in patients with metabolic derangements and is increasingly recognized as an important contributor to myocardial ischaemia, both in the presence and absence of epicardial coronary atherosclerosis. The latter condition is termed 'ischaemia and no obstructive coronary artery disease' (INOCA). Notwithstanding the high prevalence of INOCA, effective treatment remains elusive. Although to date there is no animal model for INOCA, animal models of CMD, one of the hallmarks of INOCA, offer excellent test models for enhancing our understanding of the pathophysiology of CMD and for investigating novel therapies. This article presents an overview of currently available experimental models of CMD-with an emphasis on metabolic derangements as risk factors-in dogs, swine, rabbits, rats, and mice. In all available animal models, metabolic derangements are most often induced by a high-fat diet (HFD) and/or diabetes mellitus via injection of alloxan or streptozotocin, but there is also a wide variety of spontaneous as well as transgenic animal models which develop metabolic derangements. Depending on the number, severity, and duration of exposure to risk factors-all these animal models show perturbations in coronary microvascular (endothelial) function and structure, similar to what has been observed in patients with INOCA and comorbid conditions. The use of these animal models will be instrumental in identifying novel therapeutic targets and for the subsequent development and testing of novel therapeutic interventions to combat ischaemic heart disease, the number one cause of death worldwide

    An analogue of the Coleman-Mandula theorem for quantum field theory in curved spacetimes

    Get PDF
    The Coleman-Mandula (CM) theorem states that the Poincaré and internal symmetries of a Minkowski spacetime quantum field theory cannot combine nontrivially in an extended symmetry group. We establish an analogous result for quantum field theory in curved spacetimes, assuming local covariance, the timeslice property, a local dynamical form of Lorentz invariance, and additivity. Unlike the CM theorem, our result is valid in dimensions n≥2 and for free or interacting theories. It is formulated for theories defined on a category of all globally hyperbolic spacetimes equipped with a global coframe, on which the restricted Lorentz group acts, and makes use of a general analysis of symmetries induced by the action of a group G on the category of spacetimes. Such symmetries are shown to be canonically associated with a cohomology class in the second degree nonabelian cohomology of G with coefficients in the global gauge group of the theory. Our main result proves that the cohomology class is trivial if G is the universal cover S of the restricted Lorentz group. Among other consequences, it follows that the extended symmetry group is a direct product of the global gauge group and S, all fields transform in multiplets of S, fields of different spin do not mix under the extended group, and the occurrence of noninteger spin is controlled by the centre of the global gauge group. The general analysis is also applied to rigid scale covariance

    Transauricular embolization of the rabbit coronary artery for experimental myocardial infarction: comparison of a minimally invasive closed-chest model with open-chest surgery

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>To date, most animal studies of myocardial ischemia have used open-chest models with direct surgical coronary artery ligation. We aimed to develop a novel, percutaneous, minimally-invasive, closed-chest model of experimental myocardial infarction (EMI) in the New Zealand White rabbit and compare it with the standard open-chest surgical model in order to minimize local and systemic side-effects of major surgery.</p> <p>Methods</p> <p>New Zealand White rabbits were handled in conformity with the "Guide for the Care and Use of Laboratory Animals" and underwent EMI under intravenous anesthesia. Group A underwent EMI with an open-chest method involving surgical tracheostomy, a mini median sternotomy incision and left anterior descending (LAD) coronary artery ligation with a plain suture, whereas Group B underwent EMI with a closed-chest method involving fluoroscopy-guided percutaneous transauricular intra-arterial access, superselective LAD catheterization and distal coronary embolization with a micro-coil. Electrocardiography (ECG), cardiac enzymes and transcatheter left ventricular end-diastolic pressure (LVEDP) measurements were recorded. Surviving animals were euthanized after 4 weeks and the hearts were harvested for Hematoxylin-eosin and Masson-trichrome staining.</p> <p>Results</p> <p>In total, 38 subjects underwent EMI with a surgical (n = 17) or endovascular (n = 21) approach. ST-segment elevation (1.90 ± 0.71 mm) occurred sharply after surgical LAD ligation compared to progressive ST elevation (2.01 ± 0.84 mm;p = 0.68) within 15-20 min after LAD micro-coil embolization. Increase of troponin and other cardiac enzymes, abnormal ischemic Q waves and LVEDP changes were recorded in both groups without any significant differences (p > 0.05). Infarct area was similar in both models (0.86 ± 0.35 cm in the surgical group vs. 0.92 ± 0.54 cm in the percutaneous group;p = 0.68).</p> <p>Conclusion</p> <p>The proposed model of transauricular coronary coil embolization avoids thoracotomy and major surgery and may be an equally reliable and reproducible platform for the experimental study of myocardial ischemia.</p

    Dependence of Intramyocardial Pressure and Coronary Flow on Ventricular Loading and Contractility: A Model Study

    Get PDF
    The phasic coronary arterial inflow during the normal cardiac cycle has been explained with simple (waterfall, intramyocardial pump) models, emphasizing the role of ventricular pressure. To explain changes in isovolumic and low afterload beats, these models were extended with the effect of three-dimensional wall stress, nonlinear characteristics of the coronary bed, and extravascular fluid exchange. With the associated increase in the number of model parameters, a detailed parameter sensitivity analysis has become difficult. Therefore we investigated the primary relations between ventricular pressure and volume, wall stress, intramyocardial pressure and coronary blood flow, with a mathematical model with a limited number of parameters. The model replicates several experimental observations: the phasic character of coronary inflow is virtually independent of maximum ventricular pressure, the amplitude of the coronary flow signal varies about proportionally with cardiac contractility, and intramyocardial pressure in the ventricular wall may exceed ventricular pressure. A parameter sensitivity analysis shows that the normalized amplitude of coronary inflow is mainly determined by contractility, reflected in ventricular pressure and, at low ventricular volumes, radial wall stress. Normalized flow amplitude is less sensitive to myocardial coronary compliance and resistance, and to the relation between active fiber stress, time, and sarcomere shortening velocity

    Coronary microvascular resistance: methods for its quantification in humans

    Get PDF
    Coronary microvascular dysfunction is a topic that has recently gained considerable interest in the medical community owing to the growing awareness that microvascular dysfunction occurs in a number of myocardial disease states and has important prognostic implications. With this growing awareness, comes the desire to accurately assess the functional capacity of the coronary microcirculation for diagnostic purposes as well as to monitor the effects of therapeutic interventions that are targeted at reversing the extent of coronary microvascular dysfunction. Measurements of coronary microvascular resistance play a pivotal role in achieving that goal and several invasive and noninvasive methods have been developed for its quantification. This review is intended to provide an update pertaining to the methodology of these different imaging techniques, including the discussion of their strengths and weaknesses
    corecore