8,716 research outputs found

    An Open-Source 7-Axis, Robotic Platform to Enable Dexterous Procedures within CT Scanners

    Full text link
    This paper describes the design, manufacture, and performance of a highly dexterous, low-profile, 7 Degree-of-Freedom (DOF) robotic arm for CT-guided percutaneous needle biopsy. Direct CT guidance allows physicians to localize tumours quickly; however, needle insertion is still performed by hand. This system is mounted to a fully active gantry superior to the patient's head and teleoperated by a radiologist. Unlike other similar robots, this robot's fully serial-link approach uses a unique combination of belt and cable drives for high-transparency and minimal-backlash, allowing for an expansive working area and numerous approach angles to targets all while maintaining a small in-bore cross-section of less than 16cm216cm^2. Simulations verified the system's expansive collision free work-space and ability to hit targets across the entire chest, as required for lung cancer biopsy. Targeting error is on average <1mm<1mm on a teleoperated accuracy task, illustrating the system's sufficient accuracy to perform biopsy procedures. The system is designed for lung biopsies due to the large working volume that is required for reaching peripheral lung lesions, though, with its large working volume and small in-bore cross-sectional area, the robotic system is effectively a general-purpose CT-compatible manipulation device for percutaneous procedures. Finally, with the considerable development time undertaken in designing a precise and flexible-use system and with the desire to reduce the burden of other researchers in developing algorithms for image-guided surgery, this system provides open-access, and to the best of our knowledge, is the first open-hardware image-guided biopsy robot of its kind.Comment: 8 pages, 9 figures, final submission to IROS 201

    The influence of self-citation corrections on Egghe's g index

    Full text link
    The g index was introduced by Leo Egghe as an improvement of Hirsch's index h for measuring the overall citation record of a set of articles. It better takes into account the highly skewed frequency distribution of citations than the h index. I propose to sharpen this g index by excluding the self-citations. I have worked out nine practical cases in physics and compare the h and g values with and without self-citations. As expected, the g index characterizes the data set better than the h index. The influence of the self-citations appears to be more significant for the g index than for the h index.Comment: 9 pages, 2 figures, submitted to Scientometric

    Design of small Stirling dynamic isotope power system for robotic space missions

    Get PDF
    Design of a multihundred-watt Dynamic Isotope Power System (DIPS) based on the U.S. Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE) technology is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. Unlike previous DIPS designs which were based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled down to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Preliminary characterization of units in the output power ranges 200-600 We indicate that on an electrical watt basis the GPHS/small Stirling DIPS will be roughly equivalent to an advanced RTG in size and mass but require less than a third of the isotope inventory

    Partitioning Schemes and Non-Integer Box Sizes for the Box-Counting Algorithm in Multifractal Analysis

    Full text link
    We compare different partitioning schemes for the box-counting algorithm in the multifractal analysis by computing the singularity spectrum and the distribution of the box probabilities. As model system we use the Anderson model of localization in two and three dimensions. We show that a partitioning scheme which includes unrestricted values of the box size and an average over all box origins leads to smaller error bounds than the standard method using only integer ratios of the linear system size and the box size which was found by Rodriguez et al. (Eur. Phys. J. B 67, 77-82 (2009)) to yield the most reliable results.Comment: 10 pages, 13 figure

    Multifractality: generic property of eigenstates of 2D disordered metals.

    Full text link
    The distribution function of local amplitudes of eigenstates of a two-dimensional disordered metal is calculated. Although the distribution of comparatively small amplitudes is governed by laws similar to those known from the random matrix theory, its decay at larger amplitudes is non-universal and much slower. This leads to the multifractal behavior of inverse participation numbers at any disorder. From the formal point of view, the multifractality originates from non-trivial saddle-point solutions of supersymmetric σ\sigma-model used in calculations.Comment: 4 two-column pages, no figures, submitted to PRL

    Test your surrogate data before you test for nonlinearity

    Get PDF
    The schemes for the generation of surrogate data in order to test the null hypothesis of linear stochastic process undergoing nonlinear static transform are investigated as to their consistency in representing the null hypothesis. In particular, we pinpoint some important caveats of the prominent algorithm of amplitude adjusted Fourier transform surrogates (AAFT) and compare it to the iterated AAFT (IAAFT), which is more consistent in representing the null hypothesis. It turns out that in many applications with real data the inferences of nonlinearity after marginal rejection of the null hypothesis were premature and have to be re-investigated taken into account the inaccuracies in the AAFT algorithm, mainly concerning the mismatching of the linear correlations. In order to deal with such inaccuracies we propose the use of linear together with nonlinear polynomials as discriminating statistics. The application of this setup to some well-known real data sets cautions against the use of the AAFT algorithm.Comment: 14 pages, 15 figures, submitted to Physical Review

    Soft gels from bovine colostrum

    Get PDF
    corecore